loading video online

This commit is contained in:
Jia Zheng 2024-08-27 21:05:16 +08:00
parent 323a1d954d
commit c84b92e081

View File

@ -362,93 +362,95 @@ class SFTDataset(Dataset):
skip_frms_num: ignore the first and the last xx frames, avoiding transitions.
"""
super(SFTDataset, self).__init__()
self.video_size = video_size
self.fps = fps
self.max_num_frames = max_num_frames
self.skip_frms_num = skip_frms_num
self.videos_list = []
self.captions_list = []
self.num_frames_list = []
self.fps_list = []
self.video_paths = []
decord.bridge.set_bridge("torch")
for root, dirnames, filenames in os.walk(data_dir):
for filename in filenames:
if filename.endswith(".mp4"):
video_path = os.path.join(root, filename)
vr = VideoReader(uri=video_path, height=-1, width=-1)
actual_fps = vr.get_avg_fps()
ori_vlen = len(vr)
if ori_vlen / actual_fps * fps > max_num_frames:
num_frames = max_num_frames
start = int(skip_frms_num)
end = int(start + num_frames / fps * actual_fps)
end_safty = min(int(start + num_frames / fps * actual_fps), int(ori_vlen))
indices = np.arange(start, end, (end - start) // num_frames).astype(int)
temp_frms = vr.get_batch(np.arange(start, end_safty))
assert temp_frms is not None
tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
else:
if ori_vlen > max_num_frames:
num_frames = max_num_frames
start = int(skip_frms_num)
end = int(ori_vlen - skip_frms_num)
indices = np.arange(start, end, (end - start) // num_frames).astype(int)
temp_frms = vr.get_batch(np.arange(start, end))
assert temp_frms is not None
tensor_frms = (
torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
)
tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
else:
def nearest_smaller_4k_plus_1(n):
remainder = n % 4
if remainder == 0:
return n - 3
else:
return n - remainder + 1
start = int(skip_frms_num)
end = int(ori_vlen - skip_frms_num)
num_frames = nearest_smaller_4k_plus_1(
end - start
) # 3D VAE requires the number of frames to be 4k+1
end = int(start + num_frames)
temp_frms = vr.get_batch(np.arange(start, end))
assert temp_frms is not None
tensor_frms = (
torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
)
tensor_frms = pad_last_frame(
tensor_frms, max_num_frames
) # the len of indices may be less than num_frames, due to round error
tensor_frms = tensor_frms.permute(0, 3, 1, 2) # [T, H, W, C] -> [T, C, H, W]
tensor_frms = resize_for_rectangle_crop(tensor_frms, video_size, reshape_mode="center")
tensor_frms = (tensor_frms - 127.5) / 127.5
self.videos_list.append(tensor_frms)
# caption
caption_path = os.path.join(root, filename.replace(".mp4", ".txt")).replace("videos", "labels")
if os.path.exists(caption_path):
caption = open(caption_path, "r").read().splitlines()[0]
else:
caption = ""
self.captions_list.append(caption)
self.num_frames_list.append(num_frames)
self.fps_list.append(fps)
self.video_paths.append(video_path)
def __getitem__(self, index):
decord.bridge.set_bridge("torch")
video_path = self.video_paths[index]
vr = VideoReader(uri=video_path, height=-1, width=-1)
actual_fps = vr.get_avg_fps()
ori_vlen = len(vr)
if ori_vlen / actual_fps * self.fps > self.max_num_frames:
num_frames = self.max_num_frames
start = int(self.skip_frms_num)
end = int(start + num_frames / self.fps * actual_fps)
end_safty = min(int(start + num_frames / self.fps * actual_fps), int(ori_vlen))
indices = np.arange(start, end, (end - start) // num_frames).astype(int)
temp_frms = vr.get_batch(np.arange(start, end_safty))
assert temp_frms is not None
tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
else:
if ori_vlen > self.max_num_frames:
num_frames = self.max_num_frames
start = int(self.skip_frms_num)
end = int(ori_vlen - self.skip_frms_num)
indices = np.arange(start, end, (end - start) // num_frames).astype(int)
temp_frms = vr.get_batch(np.arange(start, end))
assert temp_frms is not None
tensor_frms = (
torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
)
tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
else:
def nearest_smaller_4k_plus_1(n):
remainder = n % 4
if remainder == 0:
return n - 3
else:
return n - remainder + 1
start = int(self.skip_frms_num)
end = int(ori_vlen - self.skip_frms_num)
num_frames = nearest_smaller_4k_plus_1(
end - start
) # 3D VAE requires the number of frames to be 4k+1
end = int(start + num_frames)
temp_frms = vr.get_batch(np.arange(start, end))
assert temp_frms is not None
tensor_frms = (
torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
)
tensor_frms = pad_last_frame(
tensor_frms, self.max_num_frames
) # the len of indices may be less than num_frames, due to round error
tensor_frms = tensor_frms.permute(0, 3, 1, 2) # [T, H, W, C] -> [T, C, H, W]
tensor_frms = resize_for_rectangle_crop(tensor_frms, self.video_size, reshape_mode="center")
tensor_frms = (tensor_frms - 127.5) / 127.5
caption_path = video_path.replace(".mp4", ".txt").replace("videos", "labels")
if os.path.exists(caption_path):
caption = open(caption_path, "r").read().splitlines()[0]
else:
caption = ""
item = {
"mp4": self.videos_list[index],
"txt": self.captions_list[index],
"num_frames": self.num_frames_list[index],
"fps": self.fps_list[index],
"mp4": tensor_frms,
"txt": caption,
"num_frames": num_frames,
"fps": self.fps,
}
return item
def __len__(self):
return len(self.fps_list)
return len(self.video_paths)
@classmethod
def create_dataset_function(cls, path, args, **kwargs):