Merge pull request #169 from THUDM/main

merge
This commit is contained in:
zR 2024-08-26 13:31:40 +08:00 committed by GitHub
commit b538be32be
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 607 additions and 56 deletions

View File

@ -11,13 +11,13 @@ This code is the framework used by the team to train the model. It has few comme
## Inference Model
1. Ensure that you have correctly installed the dependencies required by this folder.
### 1. Ensure that you have correctly installed the dependencies required by this folder.
```shell
pip install -r requirements.txt
```
2. Download the model weights
### 2. Download the model weights
First, go to the SAT mirror to download the dependencies.
@ -44,9 +44,12 @@ Then unzip, the model structure should look like this:
└── 3d-vae.pt
```
Next, clone the T5 model, which is not used for training and fine-tuning, but must be used.
Due to large size of model weight file, using `git lfs` is recommended. Installation of `git lfs` can be found [here](https://github.com/git-lfs/git-lfs?tab=readme-ov-file#installing)
```
Next, clone the T5 model, which is not used for training and fine-tuning, but must be used.
> T5 model is available on [Modelscope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b) as well.
```shell
git clone https://huggingface.co/THUDM/CogVideoX-2b.git
mkdir t5-v1_1-xxl
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
@ -68,6 +71,229 @@ loading it into Deepspeed in Finetune.
0 directories, 8 files
```
Here is the English translation of the provided text:
### 3. Modify the file in `configs/cogvideox_2b.yaml`.
```yaml
model:
scale_factor: 1.15258426
disable_first_stage_autocast: true
log_keys:
- txt
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
quantize_c_noise: False
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
network_config:
target: dit_video_concat.DiffusionTransformer
params:
time_embed_dim: 512
elementwise_affine: True
num_frames: 49
time_compressed_rate: 4
latent_width: 90
latent_height: 60
num_layers: 30
patch_size: 2
in_channels: 16
out_channels: 16
hidden_size: 1920
adm_in_channels: 256
num_attention_heads: 30
transformer_args:
checkpoint_activations: True ## using gradient checkpointing
vocab_size: 1
max_sequence_length: 64
layernorm_order: pre
skip_init: false
model_parallel_size: 1
is_decoder: false
modules:
pos_embed_config:
target: dit_video_concat.Basic3DPositionEmbeddingMixin
params:
text_length: 226
height_interpolation: 1.875
width_interpolation: 1.875
patch_embed_config:
target: dit_video_concat.ImagePatchEmbeddingMixin
params:
text_hidden_size: 4096
adaln_layer_config:
target: dit_video_concat.AdaLNMixin
params:
qk_ln: True
final_layer_config:
target: dit_video_concat.FinalLayerMixin
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: false
input_key: txt
ucg_rate: 0.1
target: sgm.modules.encoders.modules.FrozenT5Embedder
params:
model_dir: "{absolute_path/to/your/t5-v1_1-xxl}/t5-v1_1-xxl" # Absolute path to the CogVideoX-2b/t5-v1_1-xxl weights folder
max_length: 226
first_stage_config:
target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper
params:
cp_size: 1
ckpt_path: "{absolute_path/to/your/t5-v1_1-xxl}/CogVideoX-2b-sat/vae/3d-vae.pt" # Absolute path to the CogVideoX-2b-sat/vae/3d-vae.pt folder
ignore_keys: [ 'loss' ]
loss_config:
target: torch.nn.Identity
regularizer_config:
target: vae_modules.regularizers.DiagonalGaussianRegularizer
encoder_config:
target: vae_modules.cp_enc_dec.ContextParallelEncoder3D
params:
double_z: true
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: True
decoder_config:
target: vae_modules.cp_enc_dec.ContextParallelDecoder3D
params:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: False
loss_fn_config:
target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss
params:
offset_noise_level: 0
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
params:
uniform_sampling: True
num_idx: 1000
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
sampler_config:
target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler
params:
num_steps: 50
verbose: True
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.DynamicCFG
params:
scale: 6
exp: 5
num_steps: 50
```
### 4. Modify the file in `configs/inference.yaml`.
```yaml
args:
latent_channels: 16
mode: inference
load: "{absolute_path/to/your}/transformer" # Absolute path to the CogVideoX-2b-sat/transformer folder
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
batch_size: 1
input_type: txt # You can choose txt for pure text input, or change to cli for command line input
input_file: configs/test.txt # Pure text file, which can be edited
sampling_num_frames: 13 # Must be 13, 11 or 9
sampling_fps: 8
fp16: True # For CogVideoX-2B
# bf16: True # For CogVideoX-5B
output_dir: outputs/
force_inference: True
```
+ Modify `configs/test.txt` if multiple prompts is required, in which each line makes a prompt.
+ For better prompt formatting, refer to [convert_demo.py](../inference/convert_demo.py), for which you should set the OPENAI_API_KEY as your environmental variable.
+ Modify `input_type` in `configs/inference.yaml` if use command line as prompt iuput.
```yaml
input_type: cli
```
This allows input from the command line as prompts.
Change `output_dir` if you wish to modify the address of the output video
```yaml
output_dir: outputs/
```
It is saved by default in the `.outputs/` folder.
### 5. Run the inference code to perform inference.
```shell
bash inference.sh
```
## Fine-tuning the Model
### Preparing the Dataset
The dataset format should be as follows:
```
.
├── labels
│   ├── 1.txt
│   ├── 2.txt
│   ├── ...
└── videos
├── 1.mp4
├── 2.mp4
├── ...
```
Each text file shares the same name as its corresponding video, serving as the label for that video. Videos and labels
should be matched one-to-one. Generally, a single video should not be associated with multiple labels.

View File

@ -11,13 +11,13 @@
## 推論モデル
1. このフォルダに必要な依存関係が正しくインストールされていることを確認してください。
### 1. このフォルダに必要な依存関係が正しくインストールされていることを確認してください。
```shell
pip install -r requirements.txt
```
2. モデルウェイトをダウンロードします
### 2. モデルウェイトをダウンロードします
まず、SAT ミラーにアクセスして依存関係をダウンロードします。
@ -44,10 +44,18 @@ unzip transformer.zip
└── 3d-vae.pt
```
次に、T5 モデルをクローンします。これはトレーニングやファインチューニングには使用されませんが、使用する必要があります。
モデルの重みファイルが大きいため、`git lfs`を使用することをお勧めいたします。`git lfs`のインストールについては、[こちら](https://github.com/git-lfs/git-lfs?tab=readme-ov-file#installing)をご参照ください。
```shell
git lfs install
```
git clone https://huggingface.co/THUDM/CogVideoX-2b.git
次に、T5 モデルをクローンします。これはトレーニングやファインチューニングには使用されませんが、使用する必要があります。
> モデルを複製する際には、[Modelscope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b)のモデルファイルの場所もご使用いただけます。
```shell
git clone https://huggingface.co/THUDM/CogVideoX-2b.git #ハギングフェイス(huggingface.org)からモデルをダウンロードいただきます
# git clone https://www.modelscope.cn/ZhipuAI/CogVideoX-2b.git #Modelscopeからモデルをダウンロードいただきます
mkdir t5-v1_1-xxl
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
```
@ -67,28 +75,182 @@ mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
0 directories, 8 files
```
3. `configs/cogvideox_2b_infer.yaml` ファイルを変更します。
### 3. `configs/cogvideox_2b.yaml` ファイルを変更します。
```yaml
load: "{your_CogVideoX-2b-sat_path}/transformer" ## Transformer モデルパス
model:
scale_factor: 1.15258426
disable_first_stage_autocast: true
log_keys:
- txt
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: false
input_key: txt
ucg_rate: 0.1
target: sgm.modules.encoders.modules.FrozenT5Embedder
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
quantize_c_noise: False
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
model_dir: "google/t5-v1_1-xxl" ## T5 モデルパス
max_length: 226
shift_scale: 3.0
first_stage_config:
target: sgm.models.autoencoder.VideoAutoencoderInferenceWrapper
params:
cp_size: 1
ckpt_path: "{your_CogVideoX-2b-sat_path}/vae/3d-vae.pt" ## VAE モデルパス
network_config:
target: dit_video_concat.DiffusionTransformer
params:
time_embed_dim: 512
elementwise_affine: True
num_frames: 49
time_compressed_rate: 4
latent_width: 90
latent_height: 60
num_layers: 30
patch_size: 2
in_channels: 16
out_channels: 16
hidden_size: 1920
adm_in_channels: 256
num_attention_heads: 30
transformer_args:
checkpoint_activations: True ## グラデーション チェックポイントを使用する
vocab_size: 1
max_sequence_length: 64
layernorm_order: pre
skip_init: false
model_parallel_size: 1
is_decoder: false
modules:
pos_embed_config:
target: dit_video_concat.Basic3DPositionEmbeddingMixin
params:
text_length: 226
height_interpolation: 1.875
width_interpolation: 1.875
patch_embed_config:
target: dit_video_concat.ImagePatchEmbeddingMixin
params:
text_hidden_size: 4096
adaln_layer_config:
target: dit_video_concat.AdaLNMixin
params:
qk_ln: True
final_layer_config:
target: dit_video_concat.FinalLayerMixin
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: false
input_key: txt
ucg_rate: 0.1
target: sgm.modules.encoders.modules.FrozenT5Embedder
params:
model_dir: "{absolute_path/to/your/t5-v1_1-xxl}/t5-v1_1-xxl" # CogVideoX-2b/t5-v1_1-xxlフォルダの絶対パス
max_length: 226
first_stage_config:
target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper
params:
cp_size: 1
ckpt_path: "{absolute_path/to/your/t5-v1_1-xxl}/CogVideoX-2b-sat/vae/3d-vae.pt" # CogVideoX-2b-sat/vae/3d-vae.ptフォルダの絶対パス
ignore_keys: [ 'loss' ]
loss_config:
target: torch.nn.Identity
regularizer_config:
target: vae_modules.regularizers.DiagonalGaussianRegularizer
encoder_config:
target: vae_modules.cp_enc_dec.ContextParallelEncoder3D
params:
double_z: true
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: True
decoder_config:
target: vae_modules.cp_enc_dec.ContextParallelDecoder3D
params:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: False
loss_fn_config:
target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss
params:
offset_noise_level: 0
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
params:
uniform_sampling: True
num_idx: 1000
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
sampler_config:
target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler
params:
num_steps: 50
verbose: True
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.DynamicCFG
params:
scale: 6
exp: 5
num_steps: 50
```
### 4. `configs/inference.yaml` ファイルを変更します。
```yaml
args:
latent_channels: 16
mode: inference
load: "{absolute_path/to/your}/transformer" # CogVideoX-2b-sat/transformerフォルダの絶対パス
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
batch_size: 1
input_type: txt #TXTのテキストファイルを入力として選択されたり、CLIコマンドラインを入力として変更されたりいただけます
input_file: configs/test.txt #テキストファイルのパスで、これに対して編集がさせていただけます
sampling_num_frames: 13 # Must be 13, 11 or 9
sampling_fps: 8
fp16: True # For CogVideoX-2B
# bf16: True # For CogVideoX-5B
output_dir: outputs/
force_inference: True
```
+ 複数のプロンプトを保存するために txt を使用する場合は、`configs/test.txt`
@ -110,7 +272,7 @@ output_dir: outputs/
デフォルトでは `.outputs/` フォルダに保存されます。
4. 推論コードを実行して推論を開始します。
### 5. 推論コードを実行して推論を開始します。
```shell
bash inference.sh

View File

@ -10,13 +10,13 @@
## 推理模型
1. 确保你已经正确安装本文件夹中的要求的依赖
### 1. 确保你已经正确安装本文件夹中的要求的依赖
```shell
pip install -r requirements.txt
```
2. 下载模型权重
### 2. 下载模型权重
首先,前往 SAT 镜像下载依赖。
@ -43,10 +43,17 @@ unzip transformer.zip
└── 3d-vae.pt
```
接着,克隆 T5 模型,该模型不用做训练和微调,但是必须使用。
由于模型的权重档案较大,建议使用`git lfs``git lfs`安装参见[这里](https://github.com/git-lfs/git-lfs?tab=readme-ov-file#installing)
```shell
git lfs install
```
git clone https://huggingface.co/THUDM/CogVideoX-2b.git
接着,克隆 T5 模型,该模型不用做训练和微调,但是必须使用。
> 克隆模型的时候也可以使用[Modelscope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b)上的模型文件位置。
```shell
git clone https://huggingface.co/THUDM/CogVideoX-2b.git #从huggingface下载模型
# git clone https://www.modelscope.cn/ZhipuAI/CogVideoX-2b.git #从modelscope下载模型
mkdir t5-v1_1-xxl
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
```
@ -66,29 +73,183 @@ mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
0 directories, 8 files
```
3. 修改`configs/cogvideox_2b_infer.yaml`中的文件。
### 3. 修改`configs/cogvideox_2b.yaml`中的文件。
```yaml
load: "{your_CogVideoX-2b-sat_path}/transformer" ## Transformer 模型路径
model:
scale_factor: 1.15258426
disable_first_stage_autocast: true
log_keys:
- txt
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: false
input_key: txt
ucg_rate: 0.1
target: sgm.modules.encoders.modules.FrozenT5Embedder
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
quantize_c_noise: False
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
model_dir: "google/t5-v1_1-xxl" ## T5 模型路径
max_length: 226
shift_scale: 3.0
first_stage_config:
target: sgm.models.autoencoder.VideoAutoencoderInferenceWrapper
params:
cp_size: 1
ckpt_path: "{your_CogVideoX-2b-sat_path}/vae/3d-vae.pt" ## VAE 模型路径
network_config:
target: dit_video_concat.DiffusionTransformer
params:
time_embed_dim: 512
elementwise_affine: True
num_frames: 49
time_compressed_rate: 4
latent_width: 90
latent_height: 60
num_layers: 30
patch_size: 2
in_channels: 16
out_channels: 16
hidden_size: 1920
adm_in_channels: 256
num_attention_heads: 30
transformer_args:
checkpoint_activations: True ## using gradient checkpointing
vocab_size: 1
max_sequence_length: 64
layernorm_order: pre
skip_init: false
model_parallel_size: 1
is_decoder: false
modules:
pos_embed_config:
target: dit_video_concat.Basic3DPositionEmbeddingMixin
params:
text_length: 226
height_interpolation: 1.875
width_interpolation: 1.875
patch_embed_config:
target: dit_video_concat.ImagePatchEmbeddingMixin
params:
text_hidden_size: 4096
adaln_layer_config:
target: dit_video_concat.AdaLNMixin
params:
qk_ln: True
final_layer_config:
target: dit_video_concat.FinalLayerMixin
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: false
input_key: txt
ucg_rate: 0.1
target: sgm.modules.encoders.modules.FrozenT5Embedder
params:
model_dir: "{absolute_path/to/your/t5-v1_1-xxl}/t5-v1_1-xxl" # CogVideoX-2b/t5-v1_1-xxl权重文件夹的绝对路径
max_length: 226
first_stage_config:
target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper
params:
cp_size: 1
ckpt_path: "{absolute_path/to/your/t5-v1_1-xxl}/CogVideoX-2b-sat/vae/3d-vae.pt" # CogVideoX-2b-sat/vae/3d-vae.pt文件夹的绝对路径
ignore_keys: [ 'loss' ]
loss_config:
target: torch.nn.Identity
regularizer_config:
target: vae_modules.regularizers.DiagonalGaussianRegularizer
encoder_config:
target: vae_modules.cp_enc_dec.ContextParallelEncoder3D
params:
double_z: true
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: True
decoder_config:
target: vae_modules.cp_enc_dec.ContextParallelDecoder3D
params:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: False
loss_fn_config:
target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss
params:
offset_noise_level: 0
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
params:
uniform_sampling: True
num_idx: 1000
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
sampler_config:
target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler
params:
num_steps: 50
verbose: True
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.DynamicCFG
params:
scale: 6
exp: 5
num_steps: 50
```
### 4. 修改`configs/inference.yaml`中的文件。
```yaml
args:
latent_channels: 16
mode: inference
load: "{absolute_path/to/your}/transformer" # CogVideoX-2b-sat/transformer文件夹的绝对路径
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
batch_size: 1
input_type: txt #可以选择txt纯文字档作为输入或者改成cli命令行作为输入
input_file: configs/test.txt #纯文字档,可以对此做编辑
sampling_num_frames: 13 # Must be 13, 11 or 9
sampling_fps: 8
fp16: True # For CogVideoX-2B
# bf16: True # For CogVideoX-5B
output_dir: outputs/
force_inference: True
```
+ 如果使用 txt 保存多个提示词,请参考`configs/test.txt`
@ -109,7 +270,7 @@ output_dir: outputs/
默认保存在`.outputs/`文件夹下。
4. 运行推理代码,即可推理
### 5. 运行推理代码, 即可推理
```shell
bash inference.sh

View File

@ -145,9 +145,10 @@ def resize_for_rectangle_crop(arr, image_size, reshape_mode="random"):
def pad_last_frame(tensor, num_frames):
# T, H, W, C
if tensor.shape[0] < num_frames:
last_frame = tensor[-int(num_frames - tensor.shape[1]) :]
padded_tensor = torch.cat([tensor, last_frame], dim=0)
if len(tensor) < num_frames:
pad_length = num_frames - len(tensor)
pad_tensor = torch.zeros([pad_length, *tensor.shape[1:]], dtype=tensor.dtype, device=tensor.device)
padded_tensor = torch.cat([tensor, pad_tensor], dim=0)
return padded_tensor
else:
return tensor[:num_frames]
@ -378,8 +379,9 @@ class SFTDataset(Dataset):
num_frames = max_num_frames
start = int(skip_frms_num)
end = int(start + num_frames / fps * actual_fps)
indices = np.arange(start, end, (end - start) / num_frames).astype(int)
temp_frms = vr.get_batch(np.arange(start, end))
end_safty = min(int(start + num_frames / fps * actual_fps), int(ori_vlen))
indices = np.arange(start, end, (end - start) // num_frames).astype(int)
temp_frms = vr.get_batch(np.arange(start, end_safty))
assert temp_frms is not None
tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
tensor_frms = tensor_frms[torch.tensor((indices - start).tolist())]
@ -388,7 +390,7 @@ class SFTDataset(Dataset):
num_frames = max_num_frames
start = int(skip_frms_num)
end = int(ori_vlen - skip_frms_num)
indices = np.arange(start, end, (end - start) / num_frames).astype(int)
indices = np.arange(start, end, (end - start) // num_frames).astype(int)
temp_frms = vr.get_batch(np.arange(start, end))
assert temp_frms is not None
tensor_frms = (
@ -417,7 +419,7 @@ class SFTDataset(Dataset):
)
tensor_frms = pad_last_frame(
tensor_frms, num_frames
tensor_frms, max_num_frames
) # the len of indices may be less than num_frames, due to round error
tensor_frms = tensor_frms.permute(0, 3, 1, 2) # [T, H, W, C] -> [T, C, H, W]
tensor_frms = resize_for_rectangle_crop(tensor_frms, video_size, reshape_mode="center")