i2v draft

This commit is contained in:
zR 2024-09-10 07:45:24 +08:00
parent f4273a7391
commit b43951addd
7 changed files with 203 additions and 80 deletions

View File

@ -53,7 +53,6 @@ def generate_video(
# 3. Enable CPU offload for the model, enable tiling.
# turn off if you have multiple GPUs or enough GPU memory(such as H100) and it will cost less time in inference
pipe.enable_model_cpu_offload()
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()

View File

@ -1,22 +1,27 @@
"""
The CogVideoX model is designed to generate high-quality videos based on detailed and highly descriptive prompts.
The model performs best when provided with refined, granular prompts, which enhance the quality of video generation.
This script is designed to assist with transforming simple user inputs into detailed prompts suitable for CogVideoX.
It can handle both text-to-video (t2v) and image-to-video (i2v) conversions.
The CogVideoX model is pre-trained and fine-tuned using longer and more detailed prompts.Therefore, it requires highly granular and detailed prompts as input.This script aims to transform user inputs into executable inputs for CogVideoX, enabling superior video generation.
- For text-to-video, simply provide the prompt.
- For image-to-video, provide the path to the image file and an optional user input.
The image will be encoded and sent as part of the request to Azure OpenAI.
This step is not mandatory; the model will still function correctly and without errors even if the prompts are not refined using this script. However, we strongly recommend using it to ensure the generation of high-quality videos.
### How to run:
Run the script for **text-to-video**:
$ python convert_demo.py --prompt "A girl riding a bike." --type "t2v"
Note:
Please set the OPENAI_API_KEY and OPENAI_BASE_URL(if needed) environment variable to your OpenAI API key before running this script.
Run the script:
$ python convert_demo.py --prompt "A girl ridding a bike." # Using with OpenAI's API
Run the script for **image-to-video**:
$ python convert_demo.py --prompt "the cat is running" --type "i2v" --image_path "/path/to/your/image.jpg"
"""
import argparse
from openai import OpenAI, AzureOpenAI
import base64
from mimetypes import guess_type
from openai import OpenAI
sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
sys_prompt_t2v = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
There are a few rules to follow:
@ -29,54 +34,108 @@ Other times the user will not want modifications , but instead want a new image
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
"""
sys_prompt_i2v = """
**Objective**: **Give a highly descriptive video caption based on input image and user input. **. As an expert, delve deep into the image with a discerning eye, leveraging rich creativity, meticulous thought. When describing the details of an image, include appropriate dynamic information to ensure that the video caption contains reasonable actions and plots. If user input is not empty, then the caption should be expanded according to the user's input.
def convert_prompt(prompt: str, retry_times: int = 3):
**Note**: The input image is the first frame of the video, and the output video caption should describe the motion starting from the current image. User input is optional and can be empty.
**Note**: Don't contain camera transitions!!! Don't contain screen switching!!! Don't contain perspective shifts !!!
**Answering Style**:
Answers should be comprehensive, conversational, and use complete sentences. The answer should be in English no matter what the user's input is. Provide context where necessary and maintain a certain tone. Begin directly without introductory phrases like "The image/video showcases" "The photo captures" and more. For example, say "A woman is on a beach", instead of "A woman is depicted in the image".
**Output Format**: "[highly descriptive image caption here]"
user input:
"""
def image_to_url(image_path):
mime_type, _ = guess_type(image_path)
if mime_type is None:
mime_type = "application/octet-stream"
with open(image_path, "rb") as image_file:
base64_encoded_data = base64.b64encode(image_file.read()).decode("utf-8")
return f"data:{mime_type};base64,{base64_encoded_data}"
def convert_prompt(prompt: str, retry_times: int = 3, type: str = "t2v", image_path: str = None):
"""
Convert a prompt to a format that can be used by the model for inference
"""
client = OpenAI()
text = prompt.strip()
## If you using with Azure OpenAI, please uncomment the below line and comment the above line
# client = AzureOpenAI(
# api_key="",
# api_version="",
# azure_endpoint=""
# )
text = prompt.strip()
for i in range(retry_times):
response = client.chat.completions.create(
messages=[
{"role": "system", "content": f"{sys_prompt}"},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " a girl is on the beach"',
},
{
"role": "assistant",
"content": "A radiant woman stands on a deserted beach, arms outstretched, wearing a beige trench coat, white blouse, light blue jeans, and chic boots, against a backdrop of soft sky and sea. Moments later, she is seen mid-twirl, arms exuberant, with the lighting suggesting dawn or dusk. Then, she runs along the beach, her attire complemented by an off-white scarf and black ankle boots, the tranquil sea behind her. Finally, she holds a paper airplane, her pose reflecting joy and freedom, with the ocean's gentle waves and the sky's soft pastel hues enhancing the serene ambiance.",
},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A man jogging on a football field"',
},
{
"role": "assistant",
"content": "A determined man in athletic attire, including a blue long-sleeve shirt, black shorts, and blue socks, jogs around a snow-covered soccer field, showcasing his solitary exercise in a quiet, overcast setting. His long dreadlocks, focused expression, and the serene winter backdrop highlight his dedication to fitness. As he moves, his attire, consisting of a blue sports sweatshirt, black athletic pants, gloves, and sneakers, grips the snowy ground. He is seen running past a chain-link fence enclosing the playground area, with a basketball hoop and children's slide, suggesting a moment of solitary exercise amidst the empty field.",
},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A woman is dancing, HD footage, close-up"',
},
{
"role": "assistant",
"content": "A young woman with her hair in an updo and wearing a teal hoodie stands against a light backdrop, initially looking over her shoulder with a contemplative expression. She then confidently makes a subtle dance move, suggesting rhythm and movement. Next, she appears poised and focused, looking directly at the camera. Her expression shifts to one of introspection as she gazes downward slightly. Finally, she dances with confidence, her left hand over her heart, symbolizing a poignant moment, all while dressed in the same teal hoodie against a plain, light-colored background.",
},
{
"role": "user",
"content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: " {text} "',
},
],
model="glm-4-0520", # glm-4-0520 and gpt-4o have be tested
temperature=0.01,
top_p=0.7,
stream=False,
max_tokens=250,
)
if type == "t2v":
response = client.chat.completions.create(
messages=[
{"role": "system", "content": f"{sys_prompt_t2v}"},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " a girl is on the beach"',
},
{
"role": "assistant",
"content": "A radiant woman stands on a deserted beach, arms outstretched, wearing a beige trench coat, white blouse, light blue jeans, and chic boots, against a backdrop of soft sky and sea. Moments later, she is seen mid-twirl, arms exuberant, with the lighting suggesting dawn or dusk. Then, she runs along the beach, her attire complemented by an off-white scarf and black ankle boots, the tranquil sea behind her. Finally, she holds a paper airplane, her pose reflecting joy and freedom, with the ocean's gentle waves and the sky's soft pastel hues enhancing the serene ambiance.",
},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A man jogging on a football field"',
},
{
"role": "assistant",
"content": "A determined man in athletic attire, including a blue long-sleeve shirt, black shorts, and blue socks, jogs around a snow-covered soccer field, showcasing his solitary exercise in a quiet, overcast setting. His long dreadlocks, focused expression, and the serene winter backdrop highlight his dedication to fitness. As he moves, his attire, consisting of a blue sports sweatshirt, black athletic pants, gloves, and sneakers, grips the snowy ground. He is seen running past a chain-link fence enclosing the playground area, with a basketball hoop and children's slide, suggesting a moment of solitary exercise amidst the empty field.",
},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A woman is dancing, HD footage, close-up"',
},
{
"role": "assistant",
"content": "A young woman with her hair in an updo and wearing a teal hoodie stands against a light backdrop, initially looking over her shoulder with a contemplative expression. She then confidently makes a subtle dance move, suggesting rhythm and movement. Next, she appears poised and focused, looking directly at the camera. Her expression shifts to one of introspection as she gazes downward slightly. Finally, she dances with confidence, her left hand over her heart, symbolizing a poignant moment, all while dressed in the same teal hoodie against a plain, light-colored background.",
},
{
"role": "user",
"content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: " {text} "',
},
],
model="glm-4-plus", # glm-4-plus and gpt-4o have be tested
temperature=0.01,
top_p=0.7,
stream=False,
max_tokens=250,
)
else:
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": f"{sys_prompt_i2v}"},
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": image_to_url(image_path),
},
},
],
},
],
temperature=0.01,
top_p=0.7,
stream=False,
max_tokens=250,
)
if response.choices:
return response.choices[0].message.content
return prompt
@ -86,7 +145,9 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, required=True, help="Prompt to convert")
parser.add_argument("--retry_times", type=int, default=3, help="Number of times to retry the conversion")
parser.add_argument("--type", type=str, default="t2v", help="Type of conversion (t2v or i2v)")
parser.add_argument("--image_path", type=str, default=None, help="Path to the image file")
args = parser.parse_args()
converted_prompt = convert_prompt(args.prompt, args.retry_times)
converted_prompt = convert_prompt(args.prompt, args.retry_times, args.type, args.image_path)
print(converted_prompt)

View File

@ -162,7 +162,6 @@ class SATVideoDiffusionEngine(nn.Module):
kwargs = {"timesteps": len(z[n * n_samples : (n + 1) * n_samples])}
else:
kwargs = {}
use_cp = False
out = self.first_stage_model.decode(z[n * n_samples : (n + 1) * n_samples], **kwargs)
all_out.append(out)
out = torch.cat(all_out, dim=0)
@ -176,8 +175,6 @@ class SATVideoDiffusionEngine(nn.Module):
x = x.permute(0, 2, 1, 3, 4).contiguous()
return x * self.scale_factor # already encoded
use_cp = False
n_samples = default(self.en_and_decode_n_samples_a_time, x.shape[0])
n_rounds = math.ceil(x.shape[0] / n_samples)
all_out = []
@ -305,11 +302,29 @@ class SATVideoDiffusionEngine(nn.Module):
samples = self.sample(c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs) # b t c h w
samples = samples.permute(0, 2, 1, 3, 4).contiguous()
if only_log_video_latents:
latents = 1.0 / self.scale_factor * samples
log["latents"] = latents
else:
samples = self.decode_first_stage(samples).to(torch.float32)
if self.noised_image_input:
image = x[:, :, 0:1]
image = self.add_noise_to_first_frame(image)
image = self.encode_first_stage(image, batch)
image = image.permute(0, 2, 1, 3, 4).contiguous()
image = torch.concat([image, torch.zeros_like(z[:, 1:])], dim=1)
c["concat"] = image
uc["concat"] = image
samples = self.sample(c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs) # b t c h w
samples = samples.permute(0, 2, 1, 3, 4).contiguous()
log["samples"] = samples
if only_log_video_latents:
latents = 1.0 / self.scale_factor * samples
log["latents"] = latents
else:
samples = self.decode_first_stage(samples).to(torch.float32)
samples = samples.permute(0, 2, 1, 3, 4).contiguous()
log["samples"] = samples
else:
if only_log_video_latents:
latents = 1.0 / self.scale_factor * samples
log["latents"] = latents
else:
samples = self.decode_first_stage(samples).to(torch.float32)
samples = samples.permute(0, 2, 1, 3, 4).contiguous()
log["samples"] = samples
return log

View File

@ -155,6 +155,25 @@ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
return emb
class Basic2DPositionEmbeddingMixin(BaseMixin):
def __init__(self, height, width, compressed_num_frames, hidden_size, text_length=0):
super().__init__()
self.height = height
self.width = width
self.spatial_length = height * width
self.pos_embedding = nn.Parameter(
torch.zeros(1, int(text_length + self.spatial_length), int(hidden_size)), requires_grad=False
)
def position_embedding_forward(self, position_ids, **kwargs):
return self.pos_embedding
def reinit(self, parent_model=None):
del self.transformer.position_embeddings
pos_embed = get_2d_sincos_pos_embed(self.pos_embedding.shape[-1], self.height, self.width)
self.pos_embedding.data[:, -self.spatial_length :].copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
class Basic3DPositionEmbeddingMixin(BaseMixin):
def __init__(
self,
@ -240,10 +259,10 @@ class Rotary3DPositionEmbeddingMixin(BaseMixin):
text_length,
theta=10000,
rot_v=False,
learnable_pos_embed=False,
):
super().__init__()
self.rot_v = rot_v
self.text_length = text_length
dim_t = hidden_size_head // 4
dim_h = hidden_size_head // 8 * 3
@ -274,6 +293,13 @@ class Rotary3DPositionEmbeddingMixin(BaseMixin):
self.register_buffer("freqs_sin", freqs_sin)
self.register_buffer("freqs_cos", freqs_cos)
self.text_length = text_length
if learnable_pos_embed:
num_patches = height * width * compressed_num_frames + text_length
self.pos_embedding = nn.Parameter(torch.zeros(1, num_patches, int(hidden_size)), requires_grad=True)
else:
self.pos_embedding = None
def rotary(self, t, **kwargs):
seq_len = t.shape[2]
freqs_cos = self.freqs_cos[:seq_len].unsqueeze(0).unsqueeze(0)
@ -362,7 +388,6 @@ class FinalLayerMixin(BaseMixin):
def final_forward(self, logits, **kwargs):
x, emb = logits[:, kwargs["text_length"] :, :], kwargs["emb"] # x:(b,(t n),d)
shift, scale = self.adaLN_modulation(emb).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
@ -458,6 +483,7 @@ class AdaLNMixin(BaseMixin):
# hidden_states (b,(n_t+t*n_i),d)
text_hidden_states = hidden_states[:, :text_length] # (b,n,d)
img_hidden_states = hidden_states[:, text_length:] # (b,(t n),d)
layer = self.transformer.layers[kwargs["layer_id"]]
adaLN_modulation = self.adaLN_modulations[kwargs["layer_id"]]
@ -492,7 +518,6 @@ class AdaLNMixin(BaseMixin):
attention_output = layer.attention(attention_input, mask, **kwargs)
text_attention_output = attention_output[:, :text_length] # (b,n,d)
img_attention_output = attention_output[:, text_length:] # (b,(t n),d)
if self.transformer.layernorm_order == "sandwich":
text_attention_output = layer.third_layernorm(text_attention_output)
img_attention_output = layer.third_layernorm(img_attention_output)
@ -748,6 +773,12 @@ class DiffusionTransformer(BaseModel):
b, t, d, h, w = x.shape
if x.dtype != self.dtype:
x = x.to(self.dtype)
if "concat_images" in kwargs and kwargs["concat_images"] is not None:
if kwargs["concat_images"].shape[0] != x.shape[0]:
concat_images = kwargs["concat_images"].repeat(2, 1, 1, 1, 1)
else:
concat_images = kwargs["concat_images"]
x = torch.cat([x, concat_images], dim=2)
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
@ -768,5 +799,4 @@ class DiffusionTransformer(BaseModel):
kwargs["input_ids"] = kwargs["position_ids"] = kwargs["attention_mask"] = torch.ones((1, 1)).to(x.dtype)
output = super().forward(**kwargs)[0]
return output

View File

@ -11,6 +11,7 @@ import numpy as np
from einops import rearrange
import torchvision.transforms as TT
from sat.model.base_model import get_model
from sat.training.model_io import load_checkpoint
from sat import mpu
@ -19,6 +20,7 @@ from diffusion_video import SATVideoDiffusionEngine
from arguments import get_args
from torchvision.transforms.functional import center_crop, resize
from torchvision.transforms import InterpolationMode
from PIL import Image
def read_from_cli():
@ -132,6 +134,11 @@ def sampling_main(args, model_cls):
image_size = [480, 720]
if args.image2video:
chained_trainsforms = []
chained_trainsforms.append(TT.ToTensor())
transform = TT.Compose(chained_trainsforms)
sample_func = model.sample
T, H, W, C, F = args.sampling_num_frames, image_size[0], image_size[1], args.latent_channels, 8
num_samples = [1]
@ -139,10 +146,21 @@ def sampling_main(args, model_cls):
device = model.device
with torch.no_grad():
for text, cnt in tqdm(data_iter):
# reload model on GPU
model.to(device)
print("rank:", rank, "start to process", text, cnt)
# TODO: broadcast image2video
if args.image2video:
text, image_path = text.split("@@")
assert os.path.exists(image_path), image_path
image = Image.open(image_path).convert("RGB")
image = transform(image).unsqueeze(0).to("cuda")
image = resize_for_rectangle_crop(image, image_size, reshape_mode="center").unsqueeze(0)
image = image * 2.0 - 1.0
image = image.unsqueeze(2).to(torch.bfloat16)
image = model.encode_first_stage(image, None)
image = image.permute(0, 2, 1, 3, 4).contiguous()
pad_shape = (image.shape[0], T - 1, C, H // F, W // F)
image = torch.concat([image, torch.zeros(pad_shape).to(image.device).to(image.dtype)], dim=1)
else:
image = None
value_dict = {
"prompt": text,
"negative_prompt": "",
@ -168,6 +186,11 @@ def sampling_main(args, model_cls):
for k in c:
if not k == "crossattn":
c[k], uc[k] = map(lambda y: y[k][: math.prod(num_samples)].to("cuda"), (c, uc))
if args.image2video and image is not None:
c["concat"] = image
uc["concat"] = image
for index in range(args.batch_size):
# reload model on GPU
model.to(device)

View File

@ -2,17 +2,9 @@ from typing import List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import ListConfig
import math
from ...modules.diffusionmodules.sampling import VideoDDIMSampler, VPSDEDPMPP2MSampler
from ...util import append_dims, instantiate_from_config
from ...modules.autoencoding.lpips.loss.lpips import LPIPS
# import rearrange
from einops import rearrange
import random
from sat import mpu
@ -107,6 +99,9 @@ class VideoDiffusionLoss(StandardDiffusionLoss):
(1 - alphas_cumprod_sqrt**2) ** 0.5, input.ndim
)
if "concat_images" in batch.keys():
additional_model_inputs["concat_images"] = batch["concat_images"]
model_output = denoiser(network, noised_input, alphas_cumprod_sqrt, cond, **additional_model_inputs)
w = append_dims(1 / (1 - alphas_cumprod_sqrt**2), input.ndim) # v-pred

View File

@ -807,7 +807,7 @@ class ContextParallelEncoder3D(nn.Module):
kernel_size=3,
)
def forward(self, x):
def forward(self, x, **kwargs):
# timestep embedding
temb = None
@ -948,7 +948,7 @@ class ContextParallelDecoder3D(nn.Module):
kernel_size=3,
)
def forward(self, z, clear_fake_cp_cache=True):
def forward(self, z, clear_fake_cp_cache=True, **kwargs):
self.last_z_shape = z.shape
# timestep embedding