mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 19:41:59 +08:00
Merge pull request #632 from THUDM/CogVideoX_dev
Refactored the training code of finetune
This commit is contained in:
commit
aa240dc675
15
.gitignore
vendored
15
.gitignore
vendored
@ -8,4 +8,17 @@ logs/
|
||||
.idea
|
||||
output*
|
||||
test*
|
||||
venv
|
||||
venv
|
||||
**/.swp
|
||||
**/*.log
|
||||
**/*.debug
|
||||
**/.vscode
|
||||
|
||||
**/*debug*
|
||||
**/.gitignore
|
||||
**/finetune/*-lora-*
|
||||
**/finetune/Disney-*
|
||||
**/wandb
|
||||
**/results
|
||||
**/*.mp4
|
||||
**/validation_set
|
||||
|
@ -1,26 +0,0 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: true
|
||||
deepspeed_config:
|
||||
deepspeed_hostfile: hostfile.txt
|
||||
deepspeed_multinode_launcher: pdsh
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_clipping: 1.0
|
||||
offload_optimizer_device: none
|
||||
offload_param_device: none
|
||||
zero3_init_flag: true
|
||||
zero_stage: 3
|
||||
distributed_type: DEEPSPEED
|
||||
downcast_bf16: 'yes'
|
||||
enable_cpu_affinity: true
|
||||
main_process_ip: 10.250.128.19
|
||||
main_process_port: 12355
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 4
|
||||
num_processes: 32
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
@ -1,20 +0,0 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
gpu_ids: "0"
|
||||
debug: false
|
||||
deepspeed_config:
|
||||
deepspeed_config_file: ds_config.json
|
||||
zero3_init_flag: false
|
||||
distributed_type: DEEPSPEED
|
||||
downcast_bf16: 'no'
|
||||
enable_cpu_affinity: false
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
dynamo_backend: 'no'
|
||||
num_machines: 1
|
||||
num_processes: 1
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
69
finetune/accelerate_train_i2v.sh
Normal file
69
finetune/accelerate_train_i2v.sh
Normal file
@ -0,0 +1,69 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Prevent tokenizer parallelism issues
|
||||
export TOKENIZERS_PARALLELISM=false
|
||||
|
||||
# Model Configuration
|
||||
MODEL_ARGS=(
|
||||
--model_path "THUDM/CogVideoX1.5-5B-I2V"
|
||||
--model_name "cogvideox1.5-i2v"
|
||||
--model_type "i2v"
|
||||
--training_type "lora"
|
||||
)
|
||||
|
||||
# Output Configuration
|
||||
OUTPUT_ARGS=(
|
||||
--output_dir "/path/to/output/dir"
|
||||
--report_to "tensorboard"
|
||||
)
|
||||
|
||||
# Data Configuration
|
||||
DATA_ARGS=(
|
||||
--data_root "/path/to/data/dir"
|
||||
--caption_column "prompt.txt"
|
||||
--video_column "videos.txt"
|
||||
--image_column "images.txt"
|
||||
--train_resolution "80x768x1360"
|
||||
)
|
||||
|
||||
# Training Configuration
|
||||
TRAIN_ARGS=(
|
||||
--train_epochs 10
|
||||
--batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--mixed_precision "bf16"
|
||||
--seed 42
|
||||
)
|
||||
|
||||
# System Configuration
|
||||
SYSTEM_ARGS=(
|
||||
--num_workers 8
|
||||
--pin_memory True
|
||||
--nccl_timeout 1800
|
||||
)
|
||||
|
||||
# Checkpointing Configuration
|
||||
CHECKPOINT_ARGS=(
|
||||
--checkpointing_steps 200
|
||||
--checkpointing_limit 10
|
||||
)
|
||||
|
||||
# Validation Configuration
|
||||
VALIDATION_ARGS=(
|
||||
--do_validation False
|
||||
--validation_dir "/path/to/validation/dir"
|
||||
--validation_steps 400
|
||||
--validation_prompts "prompts.txt"
|
||||
--validation_images "images.txt"
|
||||
--gen_fps 15
|
||||
)
|
||||
|
||||
# Combine all arguments and launch training
|
||||
accelerate launch train.py \
|
||||
"${MODEL_ARGS[@]}" \
|
||||
"${OUTPUT_ARGS[@]}" \
|
||||
"${DATA_ARGS[@]}" \
|
||||
"${TRAIN_ARGS[@]}" \
|
||||
"${SYSTEM_ARGS[@]}" \
|
||||
"${CHECKPOINT_ARGS[@]}" \
|
||||
"${VALIDATION_ARGS[@]}"
|
67
finetune/accelerate_train_t2v.sh
Normal file
67
finetune/accelerate_train_t2v.sh
Normal file
@ -0,0 +1,67 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Prevent tokenizer parallelism issues
|
||||
export TOKENIZERS_PARALLELISM=false
|
||||
|
||||
# Model Configuration
|
||||
MODEL_ARGS=(
|
||||
--model_path "THUDM/CogVideoX1.5-5B"
|
||||
--model_name "cogvideox1.5-t2v"
|
||||
--model_type "t2v"
|
||||
--training_type "lora"
|
||||
)
|
||||
|
||||
# Output Configuration
|
||||
OUTPUT_ARGS=(
|
||||
--output_dir "/path/to/output/dir"
|
||||
--report_to "tensorboard"
|
||||
)
|
||||
|
||||
# Data Configuration
|
||||
DATA_ARGS=(
|
||||
--data_root "/path/to/data/dir"
|
||||
--caption_column "prompt.txt"
|
||||
--video_column "videos.txt"
|
||||
--train_resolution "80x768x1360"
|
||||
)
|
||||
|
||||
# Training Configuration
|
||||
TRAIN_ARGS=(
|
||||
--train_epochs 10
|
||||
--batch_size 1
|
||||
--gradient_accumulation_steps 1
|
||||
--mixed_precision "bf16"
|
||||
--seed 42
|
||||
)
|
||||
|
||||
# System Configuration
|
||||
SYSTEM_ARGS=(
|
||||
--num_workers 8
|
||||
--pin_memory True
|
||||
--nccl_timeout 1800
|
||||
)
|
||||
|
||||
# Checkpointing Configuration
|
||||
CHECKPOINT_ARGS=(
|
||||
--checkpointing_steps 200
|
||||
--checkpointing_limit 10
|
||||
)
|
||||
|
||||
# Validation Configuration
|
||||
VALIDATION_ARGS=(
|
||||
--do_validation False
|
||||
--validation_dir "/path/to/validation/dir"
|
||||
--validation_steps 400
|
||||
--validation_prompts "prompts.txt"
|
||||
--gen_fps 15
|
||||
)
|
||||
|
||||
# Combine all arguments and launch training
|
||||
accelerate launch train.py \
|
||||
"${MODEL_ARGS[@]}" \
|
||||
"${OUTPUT_ARGS[@]}" \
|
||||
"${DATA_ARGS[@]}" \
|
||||
"${TRAIN_ARGS[@]}" \
|
||||
"${SYSTEM_ARGS[@]}" \
|
||||
"${CHECKPOINT_ARGS[@]}" \
|
||||
"${VALIDATION_ARGS[@]}"
|
2
finetune/constants.py
Normal file
2
finetune/constants.py
Normal file
@ -0,0 +1,2 @@
|
||||
LOG_NAME = "trainer"
|
||||
LOG_LEVEL = "INFO"
|
12
finetune/datasets/__init__.py
Normal file
12
finetune/datasets/__init__.py
Normal file
@ -0,0 +1,12 @@
|
||||
from .i2v_dataset import I2VDatasetWithResize, I2VDatasetWithBuckets
|
||||
from .t2v_dataset import T2VDatasetWithResize, T2VDatasetWithBuckets
|
||||
from .bucket_sampler import BucketSampler
|
||||
|
||||
|
||||
__all__ = [
|
||||
"I2VDatasetWithResize",
|
||||
"I2VDatasetWithBuckets",
|
||||
"T2VDatasetWithResize",
|
||||
"T2VDatasetWithBuckets",
|
||||
"BucketSampler"
|
||||
]
|
73
finetune/datasets/bucket_sampler.py
Normal file
73
finetune/datasets/bucket_sampler.py
Normal file
@ -0,0 +1,73 @@
|
||||
import random
|
||||
import logging
|
||||
|
||||
from torch.utils.data import Sampler
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BucketSampler(Sampler):
|
||||
r"""
|
||||
PyTorch Sampler that groups 3D data by height, width and frames.
|
||||
|
||||
Args:
|
||||
data_source (`VideoDataset`):
|
||||
A PyTorch dataset object that is an instance of `VideoDataset`.
|
||||
batch_size (`int`, defaults to `8`):
|
||||
The batch size to use for training.
|
||||
shuffle (`bool`, defaults to `True`):
|
||||
Whether or not to shuffle the data in each batch before dispatching to dataloader.
|
||||
drop_last (`bool`, defaults to `False`):
|
||||
Whether or not to drop incomplete buckets of data after completely iterating over all data
|
||||
in the dataset. If set to True, only batches that have `batch_size` number of entries will
|
||||
be yielded. If set to False, it is guaranteed that all data in the dataset will be processed
|
||||
and batches that do not have `batch_size` number of entries will also be yielded.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, data_source: Dataset, batch_size: int = 8, shuffle: bool = True, drop_last: bool = False
|
||||
) -> None:
|
||||
self.data_source = data_source
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.drop_last = drop_last
|
||||
|
||||
self.buckets = {resolution: [] for resolution in data_source.video_resolution_buckets}
|
||||
|
||||
self._raised_warning_for_drop_last = False
|
||||
|
||||
|
||||
def __len__(self):
|
||||
if self.drop_last and not self._raised_warning_for_drop_last:
|
||||
self._raised_warning_for_drop_last = True
|
||||
logger.warning(
|
||||
"Calculating the length for bucket sampler is not possible when `drop_last` is set to True. This may cause problems when setting the number of epochs used for training."
|
||||
)
|
||||
return (len(self.data_source) + self.batch_size - 1) // self.batch_size
|
||||
|
||||
|
||||
def __iter__(self):
|
||||
for index, data in enumerate(self.data_source):
|
||||
video_metadata = data["video_metadata"]
|
||||
f, h, w = video_metadata["num_frames"], video_metadata["height"], video_metadata["width"]
|
||||
|
||||
self.buckets[(f, h, w)].append(data)
|
||||
if len(self.buckets[(f, h, w)]) == self.batch_size:
|
||||
if self.shuffle:
|
||||
random.shuffle(self.buckets[(f, h, w)])
|
||||
yield self.buckets[(f, h, w)]
|
||||
del self.buckets[(f, h, w)]
|
||||
self.buckets[(f, h, w)] = []
|
||||
|
||||
if self.drop_last:
|
||||
return
|
||||
|
||||
for fhw, bucket in list(self.buckets.items()):
|
||||
if len(bucket) == 0:
|
||||
continue
|
||||
if self.shuffle:
|
||||
random.shuffle(bucket)
|
||||
yield bucket
|
||||
del self.buckets[fhw]
|
||||
self.buckets[fhw] = []
|
275
finetune/datasets/i2v_dataset.py
Normal file
275
finetune/datasets/i2v_dataset.py
Normal file
@ -0,0 +1,275 @@
|
||||
import torch
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple, Callable
|
||||
from typing_extensions import override
|
||||
|
||||
from accelerate.logging import get_logger
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision import transforms
|
||||
from finetune.constants import LOG_NAME, LOG_LEVEL
|
||||
|
||||
from .utils import (
|
||||
load_prompts, load_videos, load_images,
|
||||
|
||||
preprocess_image_with_resize,
|
||||
preprocess_video_with_resize,
|
||||
preprocess_video_with_buckets
|
||||
)
|
||||
|
||||
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
|
||||
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
|
||||
import decord # isort:skip
|
||||
|
||||
decord.bridge.set_bridge("torch")
|
||||
|
||||
logger = get_logger(LOG_NAME, LOG_LEVEL)
|
||||
|
||||
|
||||
class BaseI2VDataset(Dataset):
|
||||
"""
|
||||
Base dataset class for Image-to-Video (I2V) training.
|
||||
|
||||
This dataset loads prompts, videos and corresponding conditioning images for I2V training.
|
||||
|
||||
Args:
|
||||
data_root (str): Root directory containing the dataset files
|
||||
caption_column (str): Path to file containing text prompts/captions
|
||||
video_column (str): Path to file containing video paths
|
||||
image_column (str): Path to file containing image paths
|
||||
device (torch.device): Device to load the data on
|
||||
encode_video_fn (Callable[[torch.Tensor], torch.Tensor], optional): Function to encode videos
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
data_root: str,
|
||||
caption_column: str,
|
||||
video_column: str,
|
||||
image_column: str,
|
||||
device: torch.device,
|
||||
encode_video_fn: Callable[[torch.Tensor], torch.Tensor] = None,
|
||||
*args,
|
||||
**kwargs
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
data_root = Path(data_root)
|
||||
self.prompts = load_prompts(data_root / caption_column)
|
||||
self.videos = load_videos(data_root / video_column)
|
||||
self.images = load_images(data_root / image_column)
|
||||
|
||||
self.device = device
|
||||
self.encode_video_fn = encode_video_fn
|
||||
|
||||
# Check if number of prompts matches number of videos and images
|
||||
if not (len(self.videos) == len(self.prompts) == len(self.images)):
|
||||
raise ValueError(
|
||||
f"Expected length of prompts, videos and images to be the same but found {len(self.prompts)=}, {len(self.videos)=} and {len(self.images)=}. Please ensure that the number of caption prompts, videos and images match in your dataset."
|
||||
)
|
||||
|
||||
# Check if all video files exist
|
||||
if any(not path.is_file() for path in self.videos):
|
||||
raise ValueError(
|
||||
f"Some video files were not found. Please ensure that all video files exist in the dataset directory. Missing file: {next(path for path in self.videos if not path.is_file())}"
|
||||
)
|
||||
|
||||
# Check if all image files exist
|
||||
if any(not path.is_file() for path in self.images):
|
||||
raise ValueError(
|
||||
f"Some image files were not found. Please ensure that all image files exist in the dataset directory. Missing file: {next(path for path in self.images if not path.is_file())}"
|
||||
)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.videos)
|
||||
|
||||
def __getitem__(self, index: int) -> Dict[str, Any]:
|
||||
if isinstance(index, list):
|
||||
# Here, index is actually a list of data objects that we need to return.
|
||||
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
|
||||
# to have information about num_frames, height and width. Since this is not stored
|
||||
# as metadata, we need to read the video to get this information. You could read this
|
||||
# information without loading the full video in memory, but we do it anyway. In order
|
||||
# to not load the video twice (once to get the metadata, and once to return the loaded video
|
||||
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
|
||||
# to yield, we yield the cache data instead of indices. So, this special check ensures
|
||||
# that data is not loaded a second time. PRs are welcome for improvements.
|
||||
return index
|
||||
|
||||
prompt = self.prompts[index]
|
||||
video = self.videos[index]
|
||||
image = self.images[index]
|
||||
|
||||
video_latent_dir = video.parent / "latent"
|
||||
video_latent_dir.mkdir(parents=True, exist_ok=True)
|
||||
encoded_video_path = video_latent_dir / (video.stem + ".pt")
|
||||
|
||||
if encoded_video_path.exists():
|
||||
encoded_video = torch.load(encoded_video_path, weights_only=True)
|
||||
# shape of image: [C, H, W]
|
||||
_, image = self.preprocess(None, self.images[index])
|
||||
else:
|
||||
frames, image = self.preprocess(video, image)
|
||||
frames = frames.to(self.device)
|
||||
# current shape of frames: [F, C, H, W]
|
||||
frames = self.video_transform(frames)
|
||||
# Convert to [B, C, F, H, W]
|
||||
frames = frames.unsqueeze(0)
|
||||
frames = frames.permute(0, 2, 1, 3, 4).contiguous()
|
||||
encoded_video = self.encode_video_fn(frames)
|
||||
# [B, C, F, H, W] -> [C, F, H, W]
|
||||
encoded_video = encoded_video[0].cpu()
|
||||
torch.save(encoded_video, encoded_video_path)
|
||||
logger.info(f"Saved encoded video to {encoded_video_path}", main_process_only=False)
|
||||
|
||||
# shape of encoded_video: [C, F, H, W]
|
||||
# shape of image: [C, H, W]
|
||||
return {
|
||||
"prompt": prompt,
|
||||
"image": image,
|
||||
"encoded_video": encoded_video,
|
||||
"video_metadata": {
|
||||
"num_frames": encoded_video.shape[1],
|
||||
"height": encoded_video.shape[2],
|
||||
"width": encoded_video.shape[3],
|
||||
},
|
||||
}
|
||||
|
||||
def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Loads and preprocesses a video and an image.
|
||||
If either path is None, no preprocessing will be done for that input.
|
||||
|
||||
Args:
|
||||
video_path: Path to the video file to load
|
||||
image_path: Path to the image file to load
|
||||
|
||||
Returns:
|
||||
A tuple containing:
|
||||
- video(torch.Tensor) of shape [F, C, H, W] where F is number of frames,
|
||||
C is number of channels, H is height and W is width
|
||||
- image(torch.Tensor) of shape [C, H, W]
|
||||
"""
|
||||
raise NotImplementedError("Subclass must implement this method")
|
||||
|
||||
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Applies transformations to a video.
|
||||
|
||||
Args:
|
||||
frames (torch.Tensor): A 4D tensor representing a video
|
||||
with shape [F, C, H, W] where:
|
||||
- F is number of frames
|
||||
- C is number of channels (3 for RGB)
|
||||
- H is height
|
||||
- W is width
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The transformed video tensor
|
||||
"""
|
||||
raise NotImplementedError("Subclass must implement this method")
|
||||
|
||||
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Applies transformations to an image.
|
||||
|
||||
Args:
|
||||
image (torch.Tensor): A 3D tensor representing an image
|
||||
with shape [C, H, W] where:
|
||||
- C is number of channels (3 for RGB)
|
||||
- H is height
|
||||
- W is width
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The transformed image tensor
|
||||
"""
|
||||
raise NotImplementedError("Subclass must implement this method")
|
||||
|
||||
|
||||
class I2VDatasetWithResize(BaseI2VDataset):
|
||||
"""
|
||||
A dataset class for image-to-video generation that resizes inputs to fixed dimensions.
|
||||
|
||||
This class preprocesses videos and images by resizing them to specified dimensions:
|
||||
- Videos are resized to max_num_frames x height x width
|
||||
- Images are resized to height x width
|
||||
|
||||
Args:
|
||||
max_num_frames (int): Maximum number of frames to extract from videos
|
||||
height (int): Target height for resizing videos and images
|
||||
width (int): Target width for resizing videos and images
|
||||
"""
|
||||
def __init__(self, max_num_frames: int, height: int, width: int, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.max_num_frames = max_num_frames
|
||||
self.height = height
|
||||
self.width = width
|
||||
|
||||
self.__frame_transforms = transforms.Compose(
|
||||
[
|
||||
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
|
||||
]
|
||||
)
|
||||
self.__image_transforms = self.__frame_transforms
|
||||
|
||||
@override
|
||||
def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if video_path is not None:
|
||||
video = preprocess_video_with_resize(video_path, self.max_num_frames, self.height, self.width)
|
||||
else:
|
||||
video = None
|
||||
if image_path is not None:
|
||||
image = preprocess_image_with_resize(image_path, self.height, self.width)
|
||||
else:
|
||||
image = None
|
||||
return video, image
|
||||
|
||||
@override
|
||||
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
|
||||
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
|
||||
|
||||
@override
|
||||
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
|
||||
return self.__image_transforms(image)
|
||||
|
||||
|
||||
class I2VDatasetWithBuckets(BaseI2VDataset):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
video_resolution_buckets: List[Tuple[int, int, int]],
|
||||
vae_temporal_compression_ratio: int,
|
||||
vae_height_compression_ratio: int,
|
||||
vae_width_compression_ratio: int,
|
||||
*args, **kwargs
|
||||
) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.video_resolution_buckets = [
|
||||
(
|
||||
int(b[0] / vae_temporal_compression_ratio),
|
||||
int(b[1] / vae_height_compression_ratio),
|
||||
int(b[2] / vae_width_compression_ratio),
|
||||
)
|
||||
for b in video_resolution_buckets
|
||||
]
|
||||
self.__frame_transforms = transforms.Compose(
|
||||
[
|
||||
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
|
||||
]
|
||||
)
|
||||
self.__image_transforms = self.__frame_transforms
|
||||
|
||||
@override
|
||||
def preprocess(self, video_path: Path, image_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
video = preprocess_video_with_buckets(video_path, self.video_resolution_buckets)
|
||||
image = preprocess_image_with_resize(image_path, video.shape[2], video.shape[3])
|
||||
return video, image
|
||||
|
||||
@override
|
||||
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
|
||||
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
|
||||
|
||||
@override
|
||||
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
|
||||
return self.__image_transforms(image)
|
231
finetune/datasets/t2v_dataset.py
Normal file
231
finetune/datasets/t2v_dataset.py
Normal file
@ -0,0 +1,231 @@
|
||||
import torch
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple, Callable
|
||||
from typing_extensions import override
|
||||
|
||||
from accelerate.logging import get_logger
|
||||
from torch.utils.data import Dataset
|
||||
from torchvision import transforms
|
||||
|
||||
from finetune.constants import LOG_NAME, LOG_LEVEL
|
||||
|
||||
from .utils import (
|
||||
load_prompts, load_videos,
|
||||
preprocess_video_with_resize,
|
||||
preprocess_video_with_buckets
|
||||
)
|
||||
|
||||
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
|
||||
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
|
||||
import decord # isort:skip
|
||||
|
||||
decord.bridge.set_bridge("torch")
|
||||
|
||||
logger = get_logger(LOG_NAME, LOG_LEVEL)
|
||||
|
||||
|
||||
class BaseT2VDataset(Dataset):
|
||||
"""
|
||||
Base dataset class for Text-to-Video (T2V) training.
|
||||
|
||||
This dataset loads prompts and videos for T2V training.
|
||||
|
||||
Args:
|
||||
data_root (str): Root directory containing the dataset files
|
||||
caption_column (str): Path to file containing text prompts/captions
|
||||
video_column (str): Path to file containing video paths
|
||||
device (torch.device): Device to load the data on
|
||||
encode_video_fn (Callable[[torch.Tensor], torch.Tensor], optional): Function to encode videos
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data_root: str,
|
||||
caption_column: str,
|
||||
video_column: str,
|
||||
device: torch.device = None,
|
||||
encode_video_fn: Callable[[torch.Tensor], torch.Tensor] = None,
|
||||
*args,
|
||||
**kwargs
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
data_root = Path(data_root)
|
||||
self.prompts = load_prompts(data_root / caption_column)
|
||||
self.videos = load_videos(data_root / video_column)
|
||||
self.device = device
|
||||
self.encode_video_fn = encode_video_fn
|
||||
|
||||
# Check if all video files exist
|
||||
if any(not path.is_file() for path in self.videos):
|
||||
raise ValueError(
|
||||
f"Some video files were not found. Please ensure that all video files exist in the dataset directory. Missing file: {next(path for path in self.videos if not path.is_file())}"
|
||||
)
|
||||
|
||||
# Check if number of prompts matches number of videos
|
||||
if len(self.videos) != len(self.prompts):
|
||||
raise ValueError(
|
||||
f"Expected length of prompts and videos to be the same but found {len(self.prompts)=} and {len(self.videos)=}. Please ensure that the number of caption prompts and videos match in your dataset."
|
||||
)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.videos)
|
||||
|
||||
def __getitem__(self, index: int) -> Dict[str, Any]:
|
||||
if isinstance(index, list):
|
||||
# Here, index is actually a list of data objects that we need to return.
|
||||
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
|
||||
# to have information about num_frames, height and width. Since this is not stored
|
||||
# as metadata, we need to read the video to get this information. You could read this
|
||||
# information without loading the full video in memory, but we do it anyway. In order
|
||||
# to not load the video twice (once to get the metadata, and once to return the loaded video
|
||||
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
|
||||
# to yield, we yield the cache data instead of indices. So, this special check ensures
|
||||
# that data is not loaded a second time. PRs are welcome for improvements.
|
||||
return index
|
||||
|
||||
prompt = self.prompts[index]
|
||||
video = self.videos[index]
|
||||
|
||||
latent_dir = video.parent / "latent"
|
||||
latent_dir.mkdir(parents=True, exist_ok=True)
|
||||
encoded_video_path = latent_dir / (video.stem + ".pt")
|
||||
|
||||
if encoded_video_path.exists():
|
||||
# shape of encoded_video: [C, F, H, W]
|
||||
encoded_video = torch.load(encoded_video_path, weights_only=True)
|
||||
else:
|
||||
frames = self.preprocess(video)
|
||||
frames = frames.to(self.device)
|
||||
# current shape of frames: [F, C, H, W]
|
||||
frames = self.video_transform(frames)
|
||||
# Convert to [B, C, F, H, W]
|
||||
frames = frames.unsqueeze(0)
|
||||
frames = frames.permute(0, 2, 1, 3, 4).contiguous()
|
||||
encoded_video = self.encode_video_fn(frames)
|
||||
# [B, C, F, H, W] -> [C, F, H, W]
|
||||
encoded_video = encoded_video[0].cpu()
|
||||
torch.save(encoded_video, encoded_video_path)
|
||||
logger.info(f"Saved encoded video to {encoded_video_path}", main_process_only=False)
|
||||
|
||||
return {
|
||||
"prompt": prompt,
|
||||
"encoded_video": encoded_video,
|
||||
"video_metadata": {
|
||||
"num_frames": encoded_video.shape[1],
|
||||
"height": encoded_video.shape[2],
|
||||
"width": encoded_video.shape[3],
|
||||
},
|
||||
}
|
||||
|
||||
def preprocess(self, video_path: Path) -> torch.Tensor:
|
||||
"""
|
||||
Loads and preprocesses a video.
|
||||
|
||||
Args:
|
||||
video_path: Path to the video file to load.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Video tensor of shape [F, C, H, W] where:
|
||||
- F is number of frames
|
||||
- C is number of channels (3 for RGB)
|
||||
- H is height
|
||||
- W is width
|
||||
"""
|
||||
raise NotImplementedError("Subclass must implement this method")
|
||||
|
||||
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Applies transformations to a video.
|
||||
|
||||
Args:
|
||||
frames (torch.Tensor): A 4D tensor representing a video
|
||||
with shape [F, C, H, W] where:
|
||||
- F is number of frames
|
||||
- C is number of channels (3 for RGB)
|
||||
- H is height
|
||||
- W is width
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The transformed video tensor with the same shape as the input
|
||||
"""
|
||||
raise NotImplementedError("Subclass must implement this method")
|
||||
|
||||
|
||||
class T2VDatasetWithResize(BaseT2VDataset):
|
||||
"""
|
||||
A dataset class for text-to-video generation that resizes inputs to fixed dimensions.
|
||||
|
||||
This class preprocesses videos by resizing them to specified dimensions:
|
||||
- Videos are resized to max_num_frames x height x width
|
||||
|
||||
Args:
|
||||
max_num_frames (int): Maximum number of frames to extract from videos
|
||||
height (int): Target height for resizing videos
|
||||
width (int): Target width for resizing videos
|
||||
"""
|
||||
|
||||
def __init__(self, max_num_frames: int, height: int, width: int, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.max_num_frames = max_num_frames
|
||||
self.height = height
|
||||
self.width = width
|
||||
|
||||
self.__frame_transform = transforms.Compose(
|
||||
[
|
||||
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
|
||||
]
|
||||
)
|
||||
|
||||
@override
|
||||
def preprocess(self, video_path: Path) -> torch.Tensor:
|
||||
return preprocess_video_with_resize(
|
||||
video_path, self.max_num_frames, self.height, self.width,
|
||||
)
|
||||
|
||||
@override
|
||||
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
|
||||
return torch.stack([self.__frame_transform(f) for f in frames], dim=0)
|
||||
|
||||
|
||||
class T2VDatasetWithBuckets(BaseT2VDataset):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
video_resolution_buckets: List[Tuple[int, int, int]],
|
||||
vae_temporal_compression_ratio: int,
|
||||
vae_height_compression_ratio: int,
|
||||
vae_width_compression_ratio: int,
|
||||
*args, **kwargs
|
||||
) -> None:
|
||||
"""
|
||||
|
||||
"""
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.video_resolution_buckets = [
|
||||
(
|
||||
int(b[0] / vae_temporal_compression_ratio),
|
||||
int(b[1] / vae_height_compression_ratio),
|
||||
int(b[2] / vae_width_compression_ratio),
|
||||
)
|
||||
for b in video_resolution_buckets
|
||||
]
|
||||
|
||||
self.__frame_transform = transforms.Compose(
|
||||
[
|
||||
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
|
||||
]
|
||||
)
|
||||
|
||||
@override
|
||||
def preprocess(self, video_path: Path) -> torch.Tensor:
|
||||
return preprocess_video_with_buckets(
|
||||
video_path, self.video_resolution_buckets
|
||||
)
|
||||
|
||||
@override
|
||||
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
|
||||
return torch.stack([self.__frame_transform(f) for f in frames], dim=0)
|
147
finetune/datasets/utils.py
Normal file
147
finetune/datasets/utils.py
Normal file
@ -0,0 +1,147 @@
|
||||
import torch
|
||||
import cv2
|
||||
|
||||
from typing import List, Tuple
|
||||
from pathlib import Path
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import resize
|
||||
|
||||
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
|
||||
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
|
||||
import decord # isort:skip
|
||||
|
||||
decord.bridge.set_bridge("torch")
|
||||
|
||||
|
||||
########## loaders ##########
|
||||
|
||||
def load_prompts(prompt_path: Path) -> List[str]:
|
||||
with open(prompt_path, "r", encoding="utf-8") as file:
|
||||
return [line.strip() for line in file.readlines() if len(line.strip()) > 0]
|
||||
|
||||
|
||||
def load_videos(video_path: Path) -> List[Path]:
|
||||
with open(video_path, "r", encoding="utf-8") as file:
|
||||
return [video_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]
|
||||
|
||||
|
||||
def load_images(image_path: Path) -> List[Path]:
|
||||
with open(image_path, "r", encoding="utf-8") as file:
|
||||
return [image_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]
|
||||
|
||||
|
||||
########## preprocessors ##########
|
||||
|
||||
def preprocess_image_with_resize(
|
||||
image_path: Path | str,
|
||||
height: int,
|
||||
width: int,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Loads and resizes a single image.
|
||||
|
||||
Args:
|
||||
image_path: Path to the image file.
|
||||
height: Target height for resizing.
|
||||
width: Target width for resizing.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Image tensor with shape [C, H, W] where:
|
||||
C = number of channels (3 for RGB)
|
||||
H = height
|
||||
W = width
|
||||
"""
|
||||
if isinstance(image_path, str):
|
||||
image_path = Path(image_path)
|
||||
image = cv2.imread(image_path.as_posix())
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
image = cv2.resize(image, (width, height))
|
||||
image = torch.from_numpy(image).float()
|
||||
image = image.permute(2, 0, 1).contiguous()
|
||||
return image
|
||||
|
||||
|
||||
def preprocess_video_with_resize(
|
||||
video_path: Path | str,
|
||||
max_num_frames: int,
|
||||
height: int,
|
||||
width: int,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Loads and resizes a single video.
|
||||
|
||||
The function processes the video through these steps:
|
||||
1. If video frame count > max_num_frames, downsample frames evenly
|
||||
2. If video dimensions don't match (height, width), resize frames
|
||||
|
||||
Args:
|
||||
video_path: Path to the video file.
|
||||
max_num_frames: Maximum number of frames to keep.
|
||||
height: Target height for resizing.
|
||||
width: Target width for resizing.
|
||||
|
||||
Returns:
|
||||
A torch.Tensor with shape [F, C, H, W] where:
|
||||
F = number of frames
|
||||
C = number of channels (3 for RGB)
|
||||
H = height
|
||||
W = width
|
||||
"""
|
||||
if isinstance(video_path, str):
|
||||
video_path = Path(video_path)
|
||||
video_reader = decord.VideoReader(uri=video_path.as_posix(), width=width, height=height)
|
||||
video_num_frames = len(video_reader)
|
||||
if video_num_frames < max_num_frames:
|
||||
raise ValueError(f"video's frames is less than {max_num_frames}.")
|
||||
|
||||
indices = list(range(0, video_num_frames, video_num_frames // max_num_frames))
|
||||
frames = video_reader.get_batch(indices)
|
||||
frames = frames[: max_num_frames].float()
|
||||
frames = frames.permute(0, 3, 1, 2).contiguous()
|
||||
return frames
|
||||
|
||||
|
||||
def preprocess_video_with_buckets(
|
||||
video_path: Path,
|
||||
resolution_buckets: List[Tuple[int, int, int]],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
video_path: Path to the video file.
|
||||
resolution_buckets: List of tuples (num_frames, height, width) representing
|
||||
available resolution buckets.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Video tensor with shape [F, C, H, W] where:
|
||||
F = number of frames
|
||||
C = number of channels (3 for RGB)
|
||||
H = height
|
||||
W = width
|
||||
|
||||
The function processes the video through these steps:
|
||||
1. Finds nearest frame bucket <= video frame count
|
||||
2. Downsamples frames evenly to match bucket size
|
||||
3. Finds nearest resolution bucket based on dimensions
|
||||
4. Resizes frames to match bucket resolution
|
||||
"""
|
||||
video_reader = decord.VideoReader(uri=video_path.as_posix())
|
||||
video_num_frames = len(video_reader)
|
||||
resolution_buckets = [bucket for bucket in resolution_buckets if bucket[0] <= video_num_frames]
|
||||
if len(resolution_buckets) == 0:
|
||||
raise ValueError(f"video frame count in {video_path} is less than all frame buckets {resolution_buckets}")
|
||||
|
||||
nearest_frame_bucket = min(
|
||||
resolution_buckets,
|
||||
key=lambda bucket: video_num_frames - bucket[0],
|
||||
default=1,
|
||||
)[0]
|
||||
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
|
||||
frames = video_reader.get_batch(frame_indices)
|
||||
frames = frames[:nearest_frame_bucket].float()
|
||||
frames = frames.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
nearest_res = min(resolution_buckets, key=lambda x: abs(x[1] - frames.shape[2]) + abs(x[2] - frames.shape[3]))
|
||||
nearest_res = (nearest_res[1], nearest_res[2])
|
||||
frames = torch.stack([resize(f, nearest_res) for f in frames], dim=0)
|
||||
|
||||
return frames
|
@ -1,20 +0,0 @@
|
||||
{
|
||||
"scheduler": {
|
||||
"type": "WarmupDecayLR",
|
||||
"params": {
|
||||
"warmup_min_lr": "auto",
|
||||
"warmup_max_lr": "auto",
|
||||
"warmup_num_steps": "auto",
|
||||
"total_num_steps": "auto"
|
||||
}
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 2e8,
|
||||
"overlap_comm": true,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 1e8,
|
||||
"contiguous_gradients": true
|
||||
}
|
||||
}
|
@ -1,52 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
export MODEL_PATH="THUDM/CogVideoX-2b"
|
||||
export CACHE_PATH="~/.cache"
|
||||
export DATASET_PATH="Disney-VideoGeneration-Dataset"
|
||||
export OUTPUT_PATH="cogvideox-lora-multi-node"
|
||||
export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
|
||||
export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES
|
||||
|
||||
# max batch-size is 2.
|
||||
accelerate launch --config_file accelerate_config_machine_single.yaml --multi_gpu --machine_rank 0 \
|
||||
train_cogvideox_lora.py \
|
||||
--gradient_checkpointing \
|
||||
--pretrained_model_name_or_path $MODEL_PATH \
|
||||
--cache_dir $CACHE_PATH \
|
||||
--enable_tiling \
|
||||
--enable_slicing \
|
||||
--instance_data_root $DATASET_PATH \
|
||||
--caption_column prompt.txt \
|
||||
--video_column videos.txt \
|
||||
--validation_prompt "DISNEY A black and white animated scene unfolds with an anthropomorphic goat surrounded by musical notes and symbols, suggesting a playful environment. Mickey Mouse appears, leaning forward in curiosity as the goat remains still. The goat then engages with Mickey, who bends down to converse or react. The dynamics shift as Mickey grabs the goat, potentially in surprise or playfulness, amidst a minimalistic background. The scene captures the evolving relationship between the two characters in a whimsical, animated setting, emphasizing their interactions and emotions:::A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance" \
|
||||
--validation_prompt_separator ::: \
|
||||
--num_validation_videos 1 \
|
||||
--validation_epochs 100 \
|
||||
--seed 42 \
|
||||
--rank 128 \
|
||||
--lora_alpha 64 \
|
||||
--mixed_precision bf16 \
|
||||
--output_dir $OUTPUT_PATH \
|
||||
--height 480 \
|
||||
--width 720 \
|
||||
--fps 8 \
|
||||
--max_num_frames 49 \
|
||||
--skip_frames_start 0 \
|
||||
--skip_frames_end 0 \
|
||||
--train_batch_size 1 \
|
||||
--num_train_epochs 30 \
|
||||
--checkpointing_steps 1000 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--learning_rate 1e-3 \
|
||||
--lr_scheduler cosine_with_restarts \
|
||||
--lr_warmup_steps 200 \
|
||||
--lr_num_cycles 1 \
|
||||
--enable_slicing \
|
||||
--enable_tiling \
|
||||
--gradient_checkpointing \
|
||||
--optimizer AdamW \
|
||||
--adam_beta1 0.9 \
|
||||
--adam_beta2 0.95 \
|
||||
--max_grad_norm 1.0 \
|
||||
--allow_tf32 \
|
||||
--report_to wandb
|
@ -1,52 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
export MODEL_PATH="THUDM/CogVideoX-5b"
|
||||
export CACHE_PATH="~/.cache"
|
||||
export DATASET_PATH="Disney-VideoGeneration-Dataset"
|
||||
export OUTPUT_PATH="cogvideox-lora-single-node"
|
||||
export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
|
||||
export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES
|
||||
|
||||
# if you are not using wth 8 gus, change `accelerate_config_machine_single.yaml` num_processes as your gpu number
|
||||
accelerate launch --config_file accelerate_config_machine_single.yaml \
|
||||
train_cogvideox_lora.py \
|
||||
--gradient_checkpointing \
|
||||
--pretrained_model_name_or_path $MODEL_PATH \
|
||||
--cache_dir $CACHE_PATH \
|
||||
--enable_tiling \
|
||||
--enable_slicing \
|
||||
--instance_data_root $DATASET_PATH \
|
||||
--caption_column prompt.txt \
|
||||
--video_column videos.txt \
|
||||
--validation_prompt "DISNEY A black and white animated scene unfolds with an anthropomorphic goat surrounded by musical notes and symbols, suggesting a playful environment. Mickey Mouse appears, leaning forward in curiosity as the goat remains still. The goat then engages with Mickey, who bends down to converse or react. The dynamics shift as Mickey grabs the goat, potentially in surprise or playfulness, amidst a minimalistic background. The scene captures the evolving relationship between the two characters in a whimsical, animated setting, emphasizing their interactions and emotions:::A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance" \
|
||||
--validation_prompt_separator ::: \
|
||||
--num_validation_videos 1 \
|
||||
--validation_epochs 100 \
|
||||
--seed 42 \
|
||||
--rank 128 \
|
||||
--lora_alpha 64 \
|
||||
--mixed_precision bf16 \
|
||||
--output_dir $OUTPUT_PATH \
|
||||
--height 480 \
|
||||
--width 720 \
|
||||
--fps 8 \
|
||||
--max_num_frames 49 \
|
||||
--skip_frames_start 0 \
|
||||
--skip_frames_end 0 \
|
||||
--train_batch_size 1 \
|
||||
--num_train_epochs 30 \
|
||||
--checkpointing_steps 1000 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--learning_rate 1e-3 \
|
||||
--lr_scheduler cosine_with_restarts \
|
||||
--lr_warmup_steps 200 \
|
||||
--lr_num_cycles 1 \
|
||||
--enable_slicing \
|
||||
--enable_tiling \
|
||||
--gradient_checkpointing \
|
||||
--optimizer AdamW \
|
||||
--adam_beta1 0.9 \
|
||||
--adam_beta2 0.95 \
|
||||
--max_grad_norm 1.0 \
|
||||
--allow_tf32 \
|
||||
--report_to wandb
|
@ -1,2 +0,0 @@
|
||||
node1 slots=8
|
||||
node2 slots=8
|
12
finetune/models/__init__.py
Normal file
12
finetune/models/__init__.py
Normal file
@ -0,0 +1,12 @@
|
||||
import importlib
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
package_dir = Path(__file__).parent
|
||||
|
||||
for subdir in package_dir.iterdir():
|
||||
if subdir.is_dir() and not subdir.name.startswith('_'):
|
||||
for module_path in subdir.glob('*.py'):
|
||||
module_name = module_path.stem
|
||||
full_module_name = f".{subdir.name}.{module_name}"
|
||||
importlib.import_module(full_module_name, package=__name__)
|
9
finetune/models/cogvideox1dot5_i2v/lora_trainer.py
Normal file
9
finetune/models/cogvideox1dot5_i2v/lora_trainer.py
Normal file
@ -0,0 +1,9 @@
|
||||
from ..utils import register
|
||||
from ..cogvideox_i2v.lora_trainer import CogVideoXI2VLoraTrainer
|
||||
|
||||
|
||||
class CogVideoX1dot5I2VLoraTrainer(CogVideoXI2VLoraTrainer):
|
||||
pass
|
||||
|
||||
|
||||
register("cogvideox1.5-i2v", "lora", CogVideoX1dot5I2VLoraTrainer)
|
9
finetune/models/cogvideox1dot5_t2v/lora_trainer.py
Normal file
9
finetune/models/cogvideox1dot5_t2v/lora_trainer.py
Normal file
@ -0,0 +1,9 @@
|
||||
from ..cogvideox_t2v.lora_trainer import CogVideoXT2VLoraTrainer
|
||||
from ..utils import register
|
||||
|
||||
|
||||
class CogVideoX1dot5T2VLoraTrainer(CogVideoXT2VLoraTrainer):
|
||||
pass
|
||||
|
||||
|
||||
register("cogvideox1.5-t2v", "lora", CogVideoX1dot5T2VLoraTrainer)
|
240
finetune/models/cogvideox_i2v/lora_trainer.py
Normal file
240
finetune/models/cogvideox_i2v/lora_trainer.py
Normal file
@ -0,0 +1,240 @@
|
||||
import torch
|
||||
|
||||
from typing_extensions import override
|
||||
from typing import Any, Dict, List, Tuple
|
||||
from PIL import Image
|
||||
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
|
||||
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
||||
from diffusers import (
|
||||
CogVideoXImageToVideoPipeline,
|
||||
CogVideoXTransformer3DModel,
|
||||
AutoencoderKLCogVideoX,
|
||||
CogVideoXDPMScheduler,
|
||||
)
|
||||
|
||||
from finetune.trainer import Trainer
|
||||
from finetune.schemas import Components
|
||||
from finetune.utils import unwrap_model
|
||||
from ..utils import register
|
||||
|
||||
|
||||
class CogVideoXI2VLoraTrainer(Trainer):
|
||||
|
||||
@override
|
||||
def load_components(self) -> Dict[str, Any]:
|
||||
components = Components()
|
||||
model_path = str(self.args.model_path)
|
||||
|
||||
components.pipeline_cls = CogVideoXImageToVideoPipeline
|
||||
|
||||
components.tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_path, subfolder="tokenizer"
|
||||
)
|
||||
|
||||
components.text_encoder = T5EncoderModel.from_pretrained(
|
||||
model_path, subfolder="text_encoder"
|
||||
)
|
||||
|
||||
components.transformer = CogVideoXTransformer3DModel.from_pretrained(
|
||||
model_path, subfolder="transformer"
|
||||
)
|
||||
|
||||
components.vae = AutoencoderKLCogVideoX.from_pretrained(
|
||||
model_path, subfolder="vae"
|
||||
)
|
||||
|
||||
components.scheduler = CogVideoXDPMScheduler.from_pretrained(
|
||||
model_path, subfolder="scheduler"
|
||||
)
|
||||
|
||||
return components
|
||||
|
||||
@override
|
||||
def encode_video(self, video: torch.Tensor) -> torch.Tensor:
|
||||
# shape of input video: [B, C, F, H, W]
|
||||
vae = self.components.vae
|
||||
video = video.to(vae.device, dtype=vae.dtype)
|
||||
latent_dist = vae.encode(video).latent_dist
|
||||
latent = latent_dist.sample() * vae.config.scaling_factor
|
||||
return latent
|
||||
|
||||
@override
|
||||
def collate_fn(self, samples: List[Dict[str, Any]]) -> Dict[str, Any]:
|
||||
ret = {
|
||||
"encoded_videos": [],
|
||||
"prompt_token_ids": [],
|
||||
"images": []
|
||||
}
|
||||
|
||||
for sample in samples:
|
||||
encoded_video = sample["encoded_video"]
|
||||
prompt = sample["prompt"]
|
||||
image = sample["image"]
|
||||
|
||||
# tokenize prompt
|
||||
text_inputs = self.components.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.state.transformer_config.max_text_seq_length,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
ret["encoded_videos"].append(encoded_video)
|
||||
ret["prompt_token_ids"].append(text_input_ids[0])
|
||||
ret["images"].append(image)
|
||||
|
||||
ret["encoded_videos"] = torch.stack(ret["encoded_videos"])
|
||||
ret["prompt_token_ids"] = torch.stack(ret["prompt_token_ids"])
|
||||
ret["images"] = torch.stack(ret["images"])
|
||||
|
||||
return ret
|
||||
|
||||
@override
|
||||
def compute_loss(self, batch) -> torch.Tensor:
|
||||
prompt_token_ids = batch["prompt_token_ids"]
|
||||
latent = batch["encoded_videos"]
|
||||
images = batch["images"]
|
||||
|
||||
batch_size, num_channels, num_frames, height, width = latent.shape
|
||||
|
||||
# Get prompt embeddings
|
||||
prompt_embeds = self.components.text_encoder(prompt_token_ids.to(self.accelerator.device))[0]
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
prompt_embeds = prompt_embeds.view(batch_size, seq_len, -1)
|
||||
|
||||
# Add frame dimension to images [B,C,H,W] -> [B,C,F,H,W]
|
||||
images = images.unsqueeze(2)
|
||||
# Add noise to images
|
||||
image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=self.accelerator.device)
|
||||
image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=images.dtype)
|
||||
noisy_images = images + torch.randn_like(images) * image_noise_sigma[:, None, None, None, None]
|
||||
image_latent_dist = self.components.vae.encode(noisy_images).latent_dist
|
||||
image_latents = image_latent_dist.sample() * self.components.vae.config.scaling_factor
|
||||
|
||||
# Sample a random timestep for each sample
|
||||
timesteps = torch.randint(
|
||||
0, self.components.scheduler.config.num_train_timesteps,
|
||||
(batch_size,), device=self.accelerator.device
|
||||
)
|
||||
timesteps = timesteps.long()
|
||||
|
||||
# from [B, C, F, H, W] to [B, F, C, H, W]
|
||||
latent = latent.permute(0, 2, 1, 3, 4)
|
||||
image_latents = image_latents.permute(0, 2, 1, 3, 4)
|
||||
assert (latent.shape[0], *latent.shape[2:]) == (image_latents.shape[0], *image_latents.shape[2:])
|
||||
|
||||
# Padding image_latents to the same frame number as latent
|
||||
padding_shape = (latent.shape[0], latent.shape[1] - 1, *latent.shape[2:])
|
||||
latent_padding = image_latents.new_zeros(padding_shape)
|
||||
image_latents = torch.cat([image_latents, latent_padding], dim=1)
|
||||
|
||||
# Add noise to latent
|
||||
noise = torch.randn_like(latent)
|
||||
latent_noisy = self.components.scheduler.add_noise(latent, noise, timesteps)
|
||||
|
||||
# Concatenate latent and image_latents in the channel dimension
|
||||
latent_img_noisy = torch.cat([latent_noisy, image_latents], dim=2)
|
||||
|
||||
# Prepare rotary embeds
|
||||
vae_scale_factor_spatial = 2 ** (len(self.components.vae.config.block_out_channels) - 1)
|
||||
transformer_config = self.state.transformer_config
|
||||
rotary_emb = (
|
||||
self.prepare_rotary_positional_embeddings(
|
||||
height=height * vae_scale_factor_spatial,
|
||||
width=width * vae_scale_factor_spatial,
|
||||
num_frames=num_frames,
|
||||
transformer_config=transformer_config,
|
||||
vae_scale_factor_spatial=vae_scale_factor_spatial,
|
||||
device=self.accelerator.device,
|
||||
)
|
||||
if transformer_config.use_rotary_positional_embeddings
|
||||
else None
|
||||
)
|
||||
|
||||
# Predict noise
|
||||
ofs_emb = None if self.state.transformer_config.ofs_embed_dim is None else latent.new_full((1,), fill_value=2.0)
|
||||
predicted_noise = self.components.transformer(
|
||||
hidden_states=latent_img_noisy,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=timesteps,
|
||||
ofs=ofs_emb,
|
||||
image_rotary_emb=rotary_emb,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# Denoise
|
||||
latent_pred = self.components.scheduler.get_velocity(predicted_noise, latent_noisy, timesteps)
|
||||
|
||||
alphas_cumprod = self.components.scheduler.alphas_cumprod[timesteps]
|
||||
weights = 1 / (1 - alphas_cumprod)
|
||||
while len(weights.shape) < len(latent_pred.shape):
|
||||
weights = weights.unsqueeze(-1)
|
||||
|
||||
loss = torch.mean((weights * (latent_pred - latent) ** 2).reshape(batch_size, -1), dim=1)
|
||||
loss = loss.mean()
|
||||
|
||||
return loss
|
||||
|
||||
@override
|
||||
def validation_step(
|
||||
self, eval_data: Dict[str, Any]
|
||||
) -> List[Tuple[str, Image.Image | List[Image.Image]]]:
|
||||
"""
|
||||
Return the data that needs to be saved. For videos, the data format is List[PIL],
|
||||
and for images, the data format is PIL
|
||||
"""
|
||||
prompt, image, video = eval_data["prompt"], eval_data["image"], eval_data["video"]
|
||||
|
||||
pipe = self.components.pipeline_cls(
|
||||
tokenizer=self.components.tokenizer,
|
||||
text_encoder=self.components.text_encoder,
|
||||
vae=self.components.vae,
|
||||
transformer=unwrap_model(self.accelerator, self.components.transformer),
|
||||
scheduler=self.components.scheduler
|
||||
)
|
||||
video_generate = pipe(
|
||||
num_frames=self.state.train_frames,
|
||||
height=self.state.train_height,
|
||||
width=self.state.train_width,
|
||||
prompt=prompt,
|
||||
image=image,
|
||||
generator=self.state.generator
|
||||
).frames[0]
|
||||
return [("video", video_generate)]
|
||||
|
||||
def prepare_rotary_positional_embeddings(
|
||||
self,
|
||||
height: int,
|
||||
width: int,
|
||||
num_frames: int,
|
||||
transformer_config: Dict,
|
||||
vae_scale_factor_spatial: int,
|
||||
device: torch.device
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
grid_height = height // (vae_scale_factor_spatial * transformer_config.patch_size)
|
||||
grid_width = width // (vae_scale_factor_spatial * transformer_config.patch_size)
|
||||
|
||||
if transformer_config.patch_size_t is None:
|
||||
base_num_frames = num_frames
|
||||
else:
|
||||
base_num_frames = (num_frames + transformer_config.patch_size_t - 1) // transformer_config.patch_size_t
|
||||
|
||||
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
||||
embed_dim=transformer_config.attention_head_dim,
|
||||
crops_coords=None,
|
||||
grid_size=(grid_height, grid_width),
|
||||
temporal_size=base_num_frames,
|
||||
grid_type="slice",
|
||||
max_size=(grid_height, grid_width),
|
||||
device=device,
|
||||
)
|
||||
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
|
||||
register("cogvideox-i2v", "lora", CogVideoXI2VLoraTrainer)
|
214
finetune/models/cogvideox_t2v/lora_trainer.py
Normal file
214
finetune/models/cogvideox_t2v/lora_trainer.py
Normal file
@ -0,0 +1,214 @@
|
||||
import torch
|
||||
|
||||
from typing_extensions import override
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
|
||||
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
||||
from diffusers import (
|
||||
CogVideoXPipeline,
|
||||
CogVideoXTransformer3DModel,
|
||||
AutoencoderKLCogVideoX,
|
||||
CogVideoXDPMScheduler,
|
||||
)
|
||||
|
||||
from finetune.trainer import Trainer
|
||||
from finetune.schemas import Components
|
||||
from finetune.utils import unwrap_model
|
||||
from ..utils import register
|
||||
|
||||
|
||||
class CogVideoXT2VLoraTrainer(Trainer):
|
||||
|
||||
@override
|
||||
def load_components(self) -> Components:
|
||||
components = Components()
|
||||
model_path = str(self.args.model_path)
|
||||
|
||||
components.pipeline_cls = CogVideoXPipeline
|
||||
|
||||
components.tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_path, subfolder="tokenizer"
|
||||
)
|
||||
|
||||
components.text_encoder = T5EncoderModel.from_pretrained(
|
||||
model_path, subfolder="text_encoder"
|
||||
)
|
||||
|
||||
components.transformer = CogVideoXTransformer3DModel.from_pretrained(
|
||||
model_path, subfolder="transformer"
|
||||
)
|
||||
|
||||
components.vae = AutoencoderKLCogVideoX.from_pretrained(
|
||||
model_path, subfolder="vae"
|
||||
)
|
||||
|
||||
components.scheduler = CogVideoXDPMScheduler.from_pretrained(
|
||||
model_path, subfolder="scheduler"
|
||||
)
|
||||
|
||||
return components
|
||||
|
||||
@override
|
||||
def encode_video(self, video: torch.Tensor) -> torch.Tensor:
|
||||
# shape of input video: [B, C, F, H, W]
|
||||
vae = self.components.vae
|
||||
video = video.to(vae.device, dtype=vae.dtype)
|
||||
latent_dist = vae.encode(video).latent_dist
|
||||
latent = latent_dist.sample() * vae.config.scaling_factor
|
||||
return latent
|
||||
|
||||
@override
|
||||
def collate_fn(self, samples: List[Dict[str, Any]]) -> Dict[str, Any]:
|
||||
ret = {
|
||||
"encoded_videos": [],
|
||||
"prompt_token_ids": []
|
||||
}
|
||||
|
||||
for sample in samples:
|
||||
encoded_video = sample["encoded_video"]
|
||||
prompt = sample["prompt"]
|
||||
|
||||
# tokenize prompt
|
||||
text_inputs = self.components.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=226,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
|
||||
ret["encoded_videos"].append(encoded_video)
|
||||
ret["prompt_token_ids"].append(text_input_ids[0])
|
||||
|
||||
ret["encoded_videos"] = torch.stack(ret["encoded_videos"])
|
||||
ret["prompt_token_ids"] = torch.stack(ret["prompt_token_ids"])
|
||||
|
||||
return ret
|
||||
|
||||
@override
|
||||
def compute_loss(self, batch) -> torch.Tensor:
|
||||
prompt_token_ids = batch["prompt_token_ids"]
|
||||
latent = batch["encoded_videos"]
|
||||
|
||||
batch_size, num_channels, num_frames, height, width = latent.shape
|
||||
|
||||
# Get prompt embeddings
|
||||
prompt_embeds = self.components.text_encoder(prompt_token_ids.to(self.accelerator.device))[0]
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
prompt_embeds = prompt_embeds.view(batch_size, seq_len, -1)
|
||||
assert prompt_embeds.requires_grad is False
|
||||
|
||||
# Sample a random timestep for each sample
|
||||
timesteps = torch.randint(
|
||||
0, self.components.scheduler.config.num_train_timesteps,
|
||||
(batch_size,), device=self.accelerator.device
|
||||
)
|
||||
timesteps = timesteps.long()
|
||||
|
||||
# Add noise to latent
|
||||
latent = latent.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
||||
noise = torch.randn_like(latent)
|
||||
latent_added_noise = self.components.scheduler.add_noise(latent, noise, timesteps)
|
||||
|
||||
# Prepare rotary embeds
|
||||
vae_scale_factor_spatial = 2 ** (len(self.components.vae.config.block_out_channels) - 1)
|
||||
transformer_config = self.state.transformer_config
|
||||
rotary_emb = (
|
||||
self.prepare_rotary_positional_embeddings(
|
||||
height=height * vae_scale_factor_spatial,
|
||||
width=width * vae_scale_factor_spatial,
|
||||
num_frames=num_frames,
|
||||
transformer_config=transformer_config,
|
||||
vae_scale_factor_spatial=vae_scale_factor_spatial,
|
||||
device=self.accelerator.device,
|
||||
)
|
||||
if transformer_config.use_rotary_positional_embeddings
|
||||
else None
|
||||
)
|
||||
|
||||
# Predict noise
|
||||
predicted_noise = self.components.transformer(
|
||||
hidden_states=latent_added_noise,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=timesteps,
|
||||
image_rotary_emb=rotary_emb,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# Denoise
|
||||
latent_pred = self.components.scheduler.get_velocity(predicted_noise, latent_added_noise, timesteps)
|
||||
|
||||
alphas_cumprod = self.components.scheduler.alphas_cumprod[timesteps]
|
||||
weights = 1 / (1 - alphas_cumprod)
|
||||
while len(weights.shape) < len(latent_pred.shape):
|
||||
weights = weights.unsqueeze(-1)
|
||||
|
||||
loss = torch.mean((weights * (latent_pred - latent) ** 2).reshape(batch_size, -1), dim=1)
|
||||
loss = loss.mean()
|
||||
|
||||
return loss
|
||||
|
||||
@override
|
||||
def validation_step(
|
||||
self, eval_data: Dict[str, Any]
|
||||
) -> List[Tuple[str, Image.Image | List[Image.Image]]]:
|
||||
"""
|
||||
Return the data that needs to be saved. For videos, the data format is List[PIL],
|
||||
and for images, the data format is PIL
|
||||
"""
|
||||
prompt, image, video = eval_data["prompt"], eval_data["image"], eval_data["video"]
|
||||
|
||||
pipe = self.components.pipeline_cls(
|
||||
tokenizer=self.components.tokenizer,
|
||||
text_encoder=self.components.text_encoder,
|
||||
vae=self.components.vae,
|
||||
transformer=unwrap_model(self.accelerator, self.components.transformer),
|
||||
scheduler=self.components.scheduler
|
||||
)
|
||||
video_generate = pipe(
|
||||
num_frames=self.state.train_frames,
|
||||
height=self.state.train_height,
|
||||
width=self.state.train_width,
|
||||
prompt=prompt,
|
||||
generator=self.state.generator
|
||||
).frames[0]
|
||||
return [("video", video_generate)]
|
||||
|
||||
def prepare_rotary_positional_embeddings(
|
||||
self,
|
||||
height: int,
|
||||
width: int,
|
||||
num_frames: int,
|
||||
transformer_config: Dict,
|
||||
vae_scale_factor_spatial: int,
|
||||
device: torch.device
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
grid_height = height // (vae_scale_factor_spatial * transformer_config.patch_size)
|
||||
grid_width = width // (vae_scale_factor_spatial * transformer_config.patch_size)
|
||||
|
||||
if transformer_config.patch_size_t is None:
|
||||
base_num_frames = num_frames
|
||||
else:
|
||||
base_num_frames = (num_frames + transformer_config.patch_size_t - 1) // transformer_config.patch_size_t
|
||||
|
||||
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
||||
embed_dim=transformer_config.attention_head_dim,
|
||||
crops_coords=None,
|
||||
grid_size=(grid_height, grid_width),
|
||||
temporal_size=base_num_frames,
|
||||
grid_type="slice",
|
||||
max_size=(grid_height, grid_width),
|
||||
device=device,
|
||||
)
|
||||
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
|
||||
register("cogvideox-t2v", "lora", CogVideoXT2VLoraTrainer)
|
62
finetune/models/utils.py
Normal file
62
finetune/models/utils.py
Normal file
@ -0,0 +1,62 @@
|
||||
from typing import Literal, Dict
|
||||
|
||||
from finetune.trainer import Trainer
|
||||
|
||||
|
||||
SUPPORTED_MODELS: Dict[str, Dict[str, Trainer]] = {}
|
||||
|
||||
|
||||
def register(model_name: str, training_type: Literal["lora", "sft"], trainer_cls: Trainer):
|
||||
"""Register a model and its associated functions for a specific training type.
|
||||
|
||||
Args:
|
||||
model_name (str): Name of the model to register (e.g. "cogvideox-5b")
|
||||
training_type (Literal["lora", "sft"]): Type of training - either "lora" or "sft"
|
||||
trainer_cls (Trainer): Trainer class to register.
|
||||
"""
|
||||
|
||||
# Check if model_name exists in SUPPORTED_MODELS
|
||||
if model_name not in SUPPORTED_MODELS:
|
||||
SUPPORTED_MODELS[model_name] = {}
|
||||
else:
|
||||
raise ValueError(f"Model {model_name} already exists")
|
||||
|
||||
# Check if training_type exists for this model
|
||||
if training_type not in SUPPORTED_MODELS[model_name]:
|
||||
SUPPORTED_MODELS[model_name][training_type] = {}
|
||||
else:
|
||||
raise ValueError(f"Training type {training_type} already exists for model {model_name}")
|
||||
|
||||
SUPPORTED_MODELS[model_name][training_type] = trainer_cls
|
||||
|
||||
|
||||
def show_supported_models():
|
||||
"""Print all currently supported models and their training types."""
|
||||
|
||||
print("\nSupported Models:")
|
||||
print("================")
|
||||
|
||||
for model_name, training_types in SUPPORTED_MODELS.items():
|
||||
print(f"\n{model_name}")
|
||||
print("-" * len(model_name))
|
||||
for training_type in training_types:
|
||||
print(f" • {training_type}")
|
||||
|
||||
|
||||
def get_model_cls(model_type: str, training_type: Literal["lora", "sft"]) -> Trainer:
|
||||
"""Get the trainer class for a specific model and training type."""
|
||||
if model_type not in SUPPORTED_MODELS:
|
||||
print(f"\nModel '{model_type}' is not supported.")
|
||||
print("\nSupported models are:")
|
||||
for supported_model in SUPPORTED_MODELS:
|
||||
print(f" • {supported_model}")
|
||||
raise ValueError(f"Model '{model_type}' is not supported")
|
||||
|
||||
if training_type not in SUPPORTED_MODELS[model_type]:
|
||||
print(f"\nTraining type '{training_type}' is not supported for model '{model_type}'.")
|
||||
print(f"\nSupported training types for '{model_type}' are:")
|
||||
for supported_type in SUPPORTED_MODELS[model_type]:
|
||||
print(f" • {supported_type}")
|
||||
raise ValueError(f"Training type '{training_type}' is not supported for model '{model_type}'")
|
||||
|
||||
return SUPPORTED_MODELS[model_type][training_type]
|
5
finetune/schemas/__init__.py
Normal file
5
finetune/schemas/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
from .args import Args
|
||||
from .state import State
|
||||
from .components import Components
|
||||
|
||||
__all__ = ["Args", "State", "Components"]
|
211
finetune/schemas/args.py
Normal file
211
finetune/schemas/args.py
Normal file
@ -0,0 +1,211 @@
|
||||
import datetime
|
||||
import argparse
|
||||
from typing import Dict, Any, Literal, List, Tuple
|
||||
from pydantic import BaseModel, field_validator, ValidationInfo
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class Args(BaseModel):
|
||||
########## Model ##########
|
||||
model_path: Path
|
||||
model_name: str
|
||||
model_type: Literal["i2v", "t2v"]
|
||||
training_type: Literal["lora", "sft"] = "lora"
|
||||
|
||||
########## Output ##########
|
||||
output_dir: Path = Path("train_results/{:%Y-%m-%d-%H-%M-%S}".format(datetime.datetime.now()))
|
||||
report_to: Literal["tensorboard", "wandb", "all"] | None = None
|
||||
tracker_name: str = "finetrainer-cogvideo"
|
||||
|
||||
########## Data ###########
|
||||
data_root: Path
|
||||
caption_column: Path
|
||||
image_column: Path | None = None
|
||||
video_column: Path
|
||||
|
||||
########## Training #########
|
||||
resume_from_checkpoint: Path | None = None
|
||||
|
||||
seed: int | None = None
|
||||
train_epochs: int
|
||||
train_steps: int | None = None
|
||||
checkpointing_steps: int = 200
|
||||
checkpointing_limit: int = 10
|
||||
|
||||
batch_size: int
|
||||
gradient_accumulation_steps: int = 1
|
||||
|
||||
train_resolution: Tuple[int, int, int] # shape: (frames, height, width)
|
||||
|
||||
#### deprecated args: video_resolution_buckets
|
||||
# if use bucket for training, should not be None
|
||||
# Note1: At least one frame rate in the bucket must be less than or equal to the frame rate of any video in the dataset
|
||||
# Note2: For cogvideox, cogvideox1.5
|
||||
# The frame rate set in the bucket must be an integer multiple of 8 (spatial_compression_rate[4] * path_t[2] = 8)
|
||||
# The height and width set in the bucket must be an integer multiple of 8 (temporal_compression_rate[8])
|
||||
# video_resolution_buckets: List[Tuple[int, int, int]] | None = None
|
||||
|
||||
mixed_precision: Literal["no", "fp16", "bf16"]
|
||||
|
||||
learning_rate: float = 2e-5
|
||||
optimizer: str = "adamw"
|
||||
beta1: float = 0.9
|
||||
beta2: float = 0.95
|
||||
beta3: float = 0.98
|
||||
epsilon: float = 1e-8
|
||||
weight_decay: float = 1e-4
|
||||
max_grad_norm: float = 1.0
|
||||
|
||||
lr_scheduler: str = "constant_with_warmup"
|
||||
lr_warmup_steps: int = 100
|
||||
lr_num_cycles: int = 1
|
||||
lr_power: float = 1.0
|
||||
|
||||
num_workers: int = 8
|
||||
pin_memory: bool = True
|
||||
|
||||
gradient_checkpointing: bool = True
|
||||
enable_slicing: bool = True
|
||||
enable_tiling: bool = True
|
||||
nccl_timeout: int = 1800
|
||||
|
||||
########## Lora ##########
|
||||
rank: int = 128
|
||||
lora_alpha: int = 64
|
||||
target_modules: List[str] = ["to_q", "to_k", "to_v", "to_out.0"]
|
||||
|
||||
########## Validation ##########
|
||||
do_validation: bool = False
|
||||
validation_steps: int | None = None # if set, should be a multiple of checkpointing_steps
|
||||
validation_dir: Path | None # if set do_validation, should not be None
|
||||
validation_prompts: str | None # if set do_validation, should not be None
|
||||
validation_images: str | None # if set do_validation and model_type == i2v, should not be None
|
||||
validation_videos: str | None # if set do_validation and model_type == v2v, should not be None
|
||||
gen_fps: int = 15
|
||||
|
||||
#### deprecated args: gen_video_resolution
|
||||
# 1. If set do_validation, should not be None
|
||||
# 2. Suggest selecting the bucket from `video_resolution_buckets` that is closest to the resolution you have chosen for fine-tuning
|
||||
# or the resolution recommended by the model
|
||||
# 3. Note: For cogvideox, cogvideox1.5
|
||||
# The frame rate set in the bucket must be an integer multiple of 8 (spatial_compression_rate[4] * path_t[2] = 8)
|
||||
# The height and width set in the bucket must be an integer multiple of 8 (temporal_compression_rate[8])
|
||||
# gen_video_resolution: Tuple[int, int, int] | None # shape: (frames, height, width)
|
||||
|
||||
@field_validator("image_column")
|
||||
def validate_image_column(cls, v: str | None, info: ValidationInfo) -> str | None:
|
||||
values = info.data
|
||||
if values.get("model_type") == "i2v" and not v:
|
||||
raise ValueError("image_column must be specified when using i2v model")
|
||||
return v
|
||||
|
||||
@field_validator("validation_dir", "validation_prompts")
|
||||
def validate_validation_required_fields(cls, v: Any, info: ValidationInfo) -> Any:
|
||||
values = info.data
|
||||
if values.get("do_validation") and not v:
|
||||
field_name = info.field_name
|
||||
raise ValueError(f"{field_name} must be specified when do_validation is True")
|
||||
return v
|
||||
|
||||
@field_validator("validation_images")
|
||||
def validate_validation_images(cls, v: str | None, info: ValidationInfo) -> str | None:
|
||||
values = info.data
|
||||
if values.get("do_validation") and values.get("model_type") == "i2v" and not v:
|
||||
raise ValueError("validation_images must be specified when do_validation is True and model_type is i2v")
|
||||
return v
|
||||
|
||||
@field_validator("validation_videos")
|
||||
def validate_validation_videos(cls, v: str | None, info: ValidationInfo) -> str | None:
|
||||
values = info.data
|
||||
if values.get("do_validation") and values.get("model_type") == "v2v" and not v:
|
||||
raise ValueError("validation_videos must be specified when do_validation is True and model_type is v2v")
|
||||
return v
|
||||
|
||||
@field_validator("validation_steps")
|
||||
def validate_validation_steps(cls, v: int | None, info: ValidationInfo) -> int | None:
|
||||
values = info.data
|
||||
if values.get("do_validation"):
|
||||
if v is None:
|
||||
raise ValueError("validation_steps must be specified when do_validation is True")
|
||||
if values.get("checkpointing_steps") and v % values["checkpointing_steps"] != 0:
|
||||
raise ValueError("validation_steps must be a multiple of checkpointing_steps")
|
||||
return v
|
||||
|
||||
|
||||
@classmethod
|
||||
def parse_args(cls):
|
||||
"""Parse command line arguments and return Args instance"""
|
||||
parser = argparse.ArgumentParser()
|
||||
# Required arguments
|
||||
parser.add_argument("--model_path", type=str, required=True)
|
||||
parser.add_argument("--model_name", type=str, required=True)
|
||||
parser.add_argument("--model_type", type=str, required=True)
|
||||
parser.add_argument("--training_type", type=str, required=True)
|
||||
parser.add_argument("--output_dir", type=str, required=True)
|
||||
parser.add_argument("--data_root", type=str, required=True)
|
||||
parser.add_argument("--caption_column", type=str, required=True)
|
||||
parser.add_argument("--video_column", type=str, required=True)
|
||||
parser.add_argument("--train_resolution", type=str, required=True)
|
||||
parser.add_argument("--report_to", type=str, required=True)
|
||||
|
||||
# Training hyperparameters
|
||||
parser.add_argument("--seed", type=int, default=42)
|
||||
parser.add_argument("--train_epochs", type=int, default=10)
|
||||
parser.add_argument("--train_steps", type=int, default=None)
|
||||
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
||||
parser.add_argument("--batch_size", type=int, default=1)
|
||||
parser.add_argument("--learning_rate", type=float, default=2e-5)
|
||||
parser.add_argument("--optimizer", type=str, default="adamw")
|
||||
parser.add_argument("--beta1", type=float, default=0.9)
|
||||
parser.add_argument("--beta2", type=float, default=0.95)
|
||||
parser.add_argument("--beta3", type=float, default=0.98)
|
||||
parser.add_argument("--epsilon", type=float, default=1e-8)
|
||||
parser.add_argument("--weight_decay", type=float, default=1e-4)
|
||||
parser.add_argument("--max_grad_norm", type=float, default=1.0)
|
||||
|
||||
# Learning rate scheduler
|
||||
parser.add_argument("--lr_scheduler", type=str, default="constant_with_warmup")
|
||||
parser.add_argument("--lr_warmup_steps", type=int, default=100)
|
||||
parser.add_argument("--lr_num_cycles", type=int, default=1)
|
||||
parser.add_argument("--lr_power", type=float, default=1.0)
|
||||
|
||||
# Data loading
|
||||
parser.add_argument("--num_workers", type=int, default=8)
|
||||
parser.add_argument("--pin_memory", type=bool, default=True)
|
||||
parser.add_argument("--image_column", type=str, default=None)
|
||||
|
||||
# Model configuration
|
||||
parser.add_argument("--mixed_precision", type=str, default="no")
|
||||
parser.add_argument("--gradient_checkpointing", type=bool, default=True)
|
||||
parser.add_argument("--enable_slicing", type=bool, default=True)
|
||||
parser.add_argument("--enable_tiling", type=bool, default=True)
|
||||
parser.add_argument("--nccl_timeout", type=int, default=1800)
|
||||
|
||||
# LoRA parameters
|
||||
parser.add_argument("--rank", type=int, default=128)
|
||||
parser.add_argument("--lora_alpha", type=int, default=64)
|
||||
parser.add_argument("--target_modules", type=str, nargs="+",
|
||||
default=["to_q", "to_k", "to_v", "to_out.0"])
|
||||
|
||||
# Checkpointing
|
||||
parser.add_argument("--checkpointing_steps", type=int, default=200)
|
||||
parser.add_argument("--checkpointing_limit", type=int, default=10)
|
||||
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
|
||||
|
||||
# Validation
|
||||
parser.add_argument("--do_validation", type=bool, default=False)
|
||||
parser.add_argument("--validation_steps", type=int, default=None)
|
||||
parser.add_argument("--validation_dir", type=str, default=None)
|
||||
parser.add_argument("--validation_prompts", type=str, default=None)
|
||||
parser.add_argument("--validation_images", type=str, default=None)
|
||||
parser.add_argument("--validation_videos", type=str, default=None)
|
||||
parser.add_argument("--gen_fps", type=int, default=15)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Convert video_resolution_buckets string to list of tuples
|
||||
frames, height, width = args.train_resolution.split("x")
|
||||
args.train_resolution = (int(frames), int(height), int(width))
|
||||
|
||||
return cls(**vars(args))
|
27
finetune/schemas/components.py
Normal file
27
finetune/schemas/components.py
Normal file
@ -0,0 +1,27 @@
|
||||
from typing import Any
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class Components(BaseModel):
|
||||
# pipeline cls
|
||||
pipeline_cls: Any = None
|
||||
|
||||
# Tokenizers
|
||||
tokenizer: Any = None
|
||||
tokenizer_2: Any = None
|
||||
tokenizer_3: Any = None
|
||||
|
||||
# Text encoders
|
||||
text_encoder: Any = None
|
||||
text_encoder_2: Any = None
|
||||
text_encoder_3: Any = None
|
||||
|
||||
# Autoencoder
|
||||
vae: Any = None
|
||||
|
||||
# Denoiser
|
||||
transformer: Any = None
|
||||
unet: Any = None
|
||||
|
||||
# Scheduler
|
||||
scheduler: Any = None
|
26
finetune/schemas/state.py
Normal file
26
finetune/schemas/state.py
Normal file
@ -0,0 +1,26 @@
|
||||
import torch
|
||||
|
||||
from pathlib import Path
|
||||
from typing import List, Dict, Any
|
||||
from pydantic import BaseModel, field_validator
|
||||
|
||||
class State(BaseModel):
|
||||
model_config = {"arbitrary_types_allowed": True}
|
||||
|
||||
train_frames: int
|
||||
train_height: int
|
||||
train_width: int
|
||||
|
||||
transformer_config: Dict[str, Any] = None
|
||||
|
||||
weight_dtype: torch.dtype = torch.float32
|
||||
num_trainable_parameters: int = 0
|
||||
overwrote_max_train_steps: bool = False
|
||||
num_update_steps_per_epoch: int = 0
|
||||
total_batch_size_count: int = 0
|
||||
|
||||
generator: torch.Generator | None = None
|
||||
|
||||
validation_prompts: List[str] = []
|
||||
validation_images: List[Path | None] = []
|
||||
validation_videos: List[Path | None] = []
|
52
finetune/scripts/extract_images.py
Normal file
52
finetune/scripts/extract_images.py
Normal file
@ -0,0 +1,52 @@
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
import cv2
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--datadir", type=str, required=True, help="Root directory containing videos.txt and video subdirectory")
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
# Create data/images directory if it doesn't exist
|
||||
data_dir = Path(args.datadir)
|
||||
image_dir = data_dir / "images"
|
||||
image_dir.mkdir(exist_ok=True)
|
||||
|
||||
# Read videos.txt
|
||||
videos_file = data_dir / "videos.txt"
|
||||
with open(videos_file, "r") as f:
|
||||
video_paths = [line.strip() for line in f.readlines() if line.strip()]
|
||||
|
||||
# Process each video file and collect image paths
|
||||
image_paths = []
|
||||
for video_rel_path in video_paths:
|
||||
video_path = data_dir / video_rel_path
|
||||
|
||||
# Open video
|
||||
cap = cv2.VideoCapture(str(video_path))
|
||||
|
||||
# Read first frame
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print(f"Failed to read video: {video_path}")
|
||||
continue
|
||||
|
||||
# Save frame as PNG with same name as video
|
||||
image_name = f"images/{video_path.stem}.png"
|
||||
image_path = data_dir / image_name
|
||||
cv2.imwrite(str(image_path), frame)
|
||||
|
||||
# Release video capture
|
||||
cap.release()
|
||||
|
||||
print(f"Extracted first frame from {video_path} to {image_path}")
|
||||
image_paths.append(image_name)
|
||||
|
||||
# Write images.txt
|
||||
images_file = data_dir / "images.txt"
|
||||
with open(images_file, "w") as f:
|
||||
for path in image_paths:
|
||||
f.write(f"{path}\n")
|
18
finetune/train.py
Normal file
18
finetune/train.py
Normal file
@ -0,0 +1,18 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
sys.path.append(str(Path(__file__).parent.parent))
|
||||
|
||||
from finetune.schemas import Args
|
||||
from finetune.models.utils import get_model_cls
|
||||
|
||||
|
||||
def main():
|
||||
args = Args.parse_args()
|
||||
trainer_cls = get_model_cls(args.model_name, args.training_type)
|
||||
trainer = trainer_cls(args)
|
||||
trainer.fit()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
688
finetune/trainer.py
Normal file
688
finetune/trainer.py
Normal file
@ -0,0 +1,688 @@
|
||||
import os
|
||||
import logging
|
||||
import math
|
||||
import json
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
import diffusers
|
||||
import wandb
|
||||
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from typing import Dict, Any, List, Tuple
|
||||
from PIL import Image
|
||||
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from accelerate.logging import get_logger
|
||||
from accelerate.accelerator import Accelerator, DistributedType
|
||||
from accelerate.utils import (
|
||||
DistributedDataParallelKwargs,
|
||||
InitProcessGroupKwargs,
|
||||
ProjectConfiguration,
|
||||
set_seed,
|
||||
gather_object,
|
||||
)
|
||||
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.utils.export_utils import export_to_video
|
||||
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
|
||||
|
||||
from finetune.schemas import Args, State, Components
|
||||
from finetune.utils import (
|
||||
unwrap_model, cast_training_params,
|
||||
get_optimizer,
|
||||
|
||||
get_memory_statistics,
|
||||
free_memory,
|
||||
|
||||
get_latest_ckpt_path_to_resume_from,
|
||||
get_intermediate_ckpt_path,
|
||||
get_latest_ckpt_path_to_resume_from,
|
||||
get_intermediate_ckpt_path,
|
||||
|
||||
string_to_filename
|
||||
)
|
||||
from finetune.datasets import I2VDatasetWithResize, T2VDatasetWithResize
|
||||
from finetune.datasets.utils import (
|
||||
load_prompts, load_images, load_videos,
|
||||
preprocess_image_with_resize, preprocess_video_with_resize
|
||||
)
|
||||
|
||||
from finetune.constants import LOG_NAME, LOG_LEVEL
|
||||
|
||||
|
||||
logger = get_logger(LOG_NAME, LOG_LEVEL)
|
||||
|
||||
_DTYPE_MAP = {
|
||||
"fp32": torch.float32,
|
||||
"fp16": torch.float16,
|
||||
"bf16": torch.bfloat16,
|
||||
}
|
||||
|
||||
|
||||
class Trainer:
|
||||
|
||||
def __init__(self, args: Args) -> None:
|
||||
self.args = args
|
||||
self.state = State(
|
||||
weight_dtype=self.__get_training_dtype(),
|
||||
train_frames=self.args.train_resolution[0],
|
||||
train_height=self.args.train_resolution[1],
|
||||
train_width=self.args.train_resolution[2]
|
||||
)
|
||||
|
||||
self.components = Components()
|
||||
self.accelerator: Accelerator = None
|
||||
self.dataset: Dataset = None
|
||||
self.data_loader: DataLoader = None
|
||||
|
||||
self.optimizer = None
|
||||
self.lr_scheduler = None
|
||||
|
||||
self._init_distributed()
|
||||
self._init_logging()
|
||||
self._init_directories()
|
||||
|
||||
def _init_distributed(self):
|
||||
logging_dir = Path(self.args.output_dir, "logs")
|
||||
project_config = ProjectConfiguration(project_dir=self.args.output_dir, logging_dir=logging_dir)
|
||||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
||||
init_process_group_kwargs = InitProcessGroupKwargs(
|
||||
backend="nccl", timeout=timedelta(seconds=self.args.nccl_timeout)
|
||||
)
|
||||
mixed_precision = "no" if torch.backends.mps.is_available() else self.args.mixed_precision
|
||||
report_to = None if self.args.report_to.lower() == "none" else self.args.report_to
|
||||
|
||||
accelerator = Accelerator(
|
||||
project_config=project_config,
|
||||
gradient_accumulation_steps=self.args.gradient_accumulation_steps,
|
||||
mixed_precision=mixed_precision,
|
||||
log_with=report_to,
|
||||
kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
|
||||
)
|
||||
|
||||
# Disable AMP for MPS.
|
||||
if torch.backends.mps.is_available():
|
||||
accelerator.native_amp = False
|
||||
|
||||
self.accelerator = accelerator
|
||||
|
||||
if self.args.seed is not None:
|
||||
set_seed(self.args.seed)
|
||||
|
||||
def _init_logging(self) -> None:
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=LOG_LEVEL,
|
||||
)
|
||||
if self.accelerator.is_local_main_process:
|
||||
transformers.utils.logging.set_verbosity_warning()
|
||||
diffusers.utils.logging.set_verbosity_info()
|
||||
else:
|
||||
transformers.utils.logging.set_verbosity_error()
|
||||
diffusers.utils.logging.set_verbosity_error()
|
||||
|
||||
logger.info("Initialized Trainer")
|
||||
logger.info(f"Accelerator state: \n{self.accelerator.state}", main_process_only=False)
|
||||
|
||||
def _init_directories(self) -> None:
|
||||
if self.accelerator.is_main_process:
|
||||
self.args.output_dir = Path(self.args.output_dir)
|
||||
self.args.output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def prepare_models(self) -> None:
|
||||
logger.info("Initializing models")
|
||||
|
||||
# Initialize model components
|
||||
self.components = self.load_components()
|
||||
|
||||
if self.components.vae is not None:
|
||||
if self.args.enable_slicing:
|
||||
self.components.vae.enable_slicing()
|
||||
if self.args.enable_tiling:
|
||||
self.components.vae.enable_tiling()
|
||||
|
||||
self.state.transformer_config = self.components.transformer.config
|
||||
|
||||
def prepare_dataset(self) -> None:
|
||||
logger.info("Initializing dataset and dataloader")
|
||||
|
||||
if self.args.model_type == "i2v":
|
||||
self.dataset = I2VDatasetWithResize(
|
||||
**(self.args.model_dump()),
|
||||
device=self.accelerator.device,
|
||||
encode_video_fn=self.encode_video,
|
||||
max_num_frames=self.state.train_frames,
|
||||
height=self.state.train_height,
|
||||
width=self.state.train_width
|
||||
)
|
||||
elif self.args.model_type == "t2v":
|
||||
self.dataset = T2VDatasetWithResize(
|
||||
**(self.args.model_dump()),
|
||||
device=self.accelerator.device,
|
||||
encode_video_fn=self.encode_video,
|
||||
max_num_frames=self.state.train_frames,
|
||||
height=self.state.train_height,
|
||||
width=self.state.train_width
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid model type: {self.args.model_type}")
|
||||
|
||||
# Prepare VAE for encoding
|
||||
self.components.vae = self.components.vae.to(self.accelerator.device)
|
||||
self.components.vae.requires_grad_(False)
|
||||
|
||||
# Precompute latent for video
|
||||
logger.info("Precomputing latent for video ...")
|
||||
tmp_data_loader = torch.utils.data.DataLoader(
|
||||
self.dataset,
|
||||
collate_fn=self.collate_fn,
|
||||
batch_size=1,
|
||||
num_workers=0,
|
||||
pin_memory=self.args.pin_memory,
|
||||
)
|
||||
tmp_data_loader = self.accelerator.prepare_data_loader(tmp_data_loader)
|
||||
for _ in tmp_data_loader: ...
|
||||
logger.info("Precomputing latent for video ... Done")
|
||||
|
||||
self.data_loader = torch.utils.data.DataLoader(
|
||||
self.dataset,
|
||||
collate_fn=self.collate_fn,
|
||||
batch_size=self.args.batch_size,
|
||||
num_workers=self.args.num_workers,
|
||||
pin_memory=self.args.pin_memory,
|
||||
shuffle=True
|
||||
)
|
||||
|
||||
|
||||
def prepare_trainable_parameters(self):
|
||||
logger.info("Initializing trainable parameters")
|
||||
|
||||
# For now only lora is supported
|
||||
for attr_name, component in vars(self.components).items():
|
||||
if hasattr(component, 'requires_grad_'):
|
||||
component.requires_grad_(False)
|
||||
|
||||
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
|
||||
# as these weights are only used for inference, keeping weights in full precision is not required.
|
||||
weight_dtype = self.state.weight_dtype
|
||||
|
||||
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
|
||||
# due to pytorch#99272, MPS does not yet support bfloat16.
|
||||
raise ValueError(
|
||||
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
|
||||
)
|
||||
|
||||
self.__move_components_to_device()
|
||||
|
||||
if self.args.gradient_checkpointing:
|
||||
self.components.transformer.enable_gradient_checkpointing()
|
||||
|
||||
transformer_lora_config = LoraConfig(
|
||||
r=self.args.rank,
|
||||
lora_alpha=self.args.lora_alpha,
|
||||
init_lora_weights=True,
|
||||
target_modules=self.args.target_modules,
|
||||
)
|
||||
self.components.transformer.add_adapter(transformer_lora_config)
|
||||
self.__prepare_saving_loading_hooks(transformer_lora_config)
|
||||
|
||||
def prepare_optimizer(self) -> None:
|
||||
logger.info("Initializing optimizer and lr scheduler")
|
||||
|
||||
# Make sure the trainable params are in float32
|
||||
if self.args.mixed_precision == "fp16":
|
||||
# only upcast trainable parameters (LoRA) into fp32
|
||||
cast_training_params([self.components.transformer], dtype=torch.float32)
|
||||
|
||||
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, self.components.transformer.parameters()))
|
||||
transformer_parameters_with_lr = {
|
||||
"params": transformer_lora_parameters,
|
||||
"lr": self.args.learning_rate,
|
||||
}
|
||||
params_to_optimize = [transformer_parameters_with_lr]
|
||||
self.state.num_trainable_parameters = sum(p.numel() for p in transformer_lora_parameters)
|
||||
|
||||
use_deepspeed_opt = (
|
||||
self.accelerator.state.deepspeed_plugin is not None
|
||||
and "optimizer" in self.accelerator.state.deepspeed_plugin.deepspeed_config
|
||||
)
|
||||
optimizer = get_optimizer(
|
||||
params_to_optimize=params_to_optimize,
|
||||
optimizer_name=self.args.optimizer,
|
||||
learning_rate=self.args.learning_rate,
|
||||
beta1=self.args.beta1,
|
||||
beta2=self.args.beta2,
|
||||
beta3=self.args.beta3,
|
||||
epsilon=self.args.epsilon,
|
||||
weight_decay=self.args.weight_decay,
|
||||
use_deepspeed=use_deepspeed_opt,
|
||||
)
|
||||
|
||||
num_update_steps_per_epoch = math.ceil(len(self.data_loader) / self.args.gradient_accumulation_steps)
|
||||
if self.args.train_steps is None:
|
||||
self.args.train_steps = self.args.train_epochs * num_update_steps_per_epoch
|
||||
self.state.overwrote_max_train_steps = True
|
||||
|
||||
use_deepspeed_lr_scheduler = (
|
||||
self.accelerator.state.deepspeed_plugin is not None
|
||||
and "scheduler" in self.accelerator.state.deepspeed_plugin.deepspeed_config
|
||||
)
|
||||
total_training_steps = self.args.train_steps * self.accelerator.num_processes
|
||||
num_warmup_steps = self.args.lr_warmup_steps * self.accelerator.num_processes
|
||||
|
||||
if use_deepspeed_lr_scheduler:
|
||||
from accelerate.utils import DummyScheduler
|
||||
|
||||
lr_scheduler = DummyScheduler(
|
||||
name=self.args.lr_scheduler,
|
||||
optimizer=optimizer,
|
||||
total_num_steps=total_training_steps,
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
)
|
||||
else:
|
||||
lr_scheduler = get_scheduler(
|
||||
name=self.args.lr_scheduler,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
num_training_steps=total_training_steps,
|
||||
num_cycles=self.args.lr_num_cycles,
|
||||
power=self.args.lr_power,
|
||||
)
|
||||
|
||||
self.optimizer = optimizer
|
||||
self.lr_scheduler = lr_scheduler
|
||||
|
||||
def prepare_for_training(self) -> None:
|
||||
self.components.transformer, self.optimizer, self.data_loader, self.lr_scheduler = self.accelerator.prepare(
|
||||
self.components.transformer, self.optimizer, self.data_loader, self.lr_scheduler
|
||||
)
|
||||
|
||||
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
||||
num_update_steps_per_epoch = math.ceil(len(self.data_loader) / self.args.gradient_accumulation_steps)
|
||||
if self.state.overwrote_max_train_steps:
|
||||
self.args.train_steps = self.args.train_epochs * num_update_steps_per_epoch
|
||||
# Afterwards we recalculate our number of training epochs
|
||||
self.args.train_epochs = math.ceil(self.args.train_steps / num_update_steps_per_epoch)
|
||||
self.state.num_update_steps_per_epoch = num_update_steps_per_epoch
|
||||
|
||||
def prepare_for_validation(self):
|
||||
validation_prompts = load_prompts(self.args.validation_dir / self.args.validation_prompts)
|
||||
|
||||
if self.args.validation_images is not None:
|
||||
validation_images = load_images(self.args.validation_dir / self.args.validation_images)
|
||||
else:
|
||||
validation_images = [None] * len(validation_prompts)
|
||||
|
||||
if self.args.validation_videos is not None:
|
||||
validation_videos = load_videos(self.args.validation_dir / self.args.validation_videos)
|
||||
else:
|
||||
validation_videos = [None] * len(validation_prompts)
|
||||
|
||||
self.state.validation_prompts = validation_prompts
|
||||
self.state.validation_images = validation_images
|
||||
self.state.validation_videos = validation_videos
|
||||
|
||||
def prepare_trackers(self) -> None:
|
||||
logger.info("Initializing trackers")
|
||||
|
||||
tracker_name = self.args.tracker_name or "finetrainers-experiment"
|
||||
self.accelerator.init_trackers(tracker_name, config=self.args.model_dump())
|
||||
|
||||
def train(self) -> None:
|
||||
logger.info("Starting training")
|
||||
|
||||
memory_statistics = get_memory_statistics()
|
||||
logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")
|
||||
|
||||
self.state.total_batch_size_count = (
|
||||
self.args.batch_size * self.accelerator.num_processes * self.args.gradient_accumulation_steps
|
||||
)
|
||||
info = {
|
||||
"trainable parameters": self.state.num_trainable_parameters,
|
||||
"total samples": len(self.dataset),
|
||||
"train epochs": self.args.train_epochs,
|
||||
"train steps": self.args.train_steps,
|
||||
"batches per device": self.args.batch_size,
|
||||
"total batches observed per epoch": len(self.data_loader),
|
||||
"train batch size total count": self.state.total_batch_size_count,
|
||||
"gradient accumulation steps": self.args.gradient_accumulation_steps,
|
||||
}
|
||||
logger.info(f"Training configuration: {json.dumps(info, indent=4)}")
|
||||
|
||||
global_step = 0
|
||||
first_epoch = 0
|
||||
initial_global_step = 0
|
||||
|
||||
# Potentially load in the weights and states from a previous save
|
||||
(
|
||||
resume_from_checkpoint_path,
|
||||
initial_global_step,
|
||||
global_step,
|
||||
first_epoch,
|
||||
) = get_latest_ckpt_path_to_resume_from(
|
||||
resume_from_checkpoint=self.args.resume_from_checkpoint,
|
||||
num_update_steps_per_epoch=self.state.num_update_steps_per_epoch,
|
||||
)
|
||||
if resume_from_checkpoint_path is not None:
|
||||
self.accelerator.load_state(resume_from_checkpoint_path)
|
||||
|
||||
progress_bar = tqdm(
|
||||
range(0, self.args.train_steps),
|
||||
initial=initial_global_step,
|
||||
desc="Training steps",
|
||||
disable=not self.accelerator.is_local_main_process,
|
||||
)
|
||||
|
||||
accelerator = self.accelerator
|
||||
generator = torch.Generator(device=accelerator.device)
|
||||
if self.args.seed is not None:
|
||||
generator = generator.manual_seed(self.args.seed)
|
||||
self.state.generator = generator
|
||||
|
||||
for epoch in range(first_epoch, self.args.train_epochs):
|
||||
logger.debug(f"Starting epoch ({epoch + 1}/{self.args.train_epochs})")
|
||||
|
||||
self.components.transformer.train()
|
||||
models_to_accumulate = [self.components.transformer]
|
||||
|
||||
for step, batch in enumerate(self.data_loader):
|
||||
logger.debug(f"Starting step {step + 1}")
|
||||
logs = {}
|
||||
|
||||
with accelerator.accumulate(models_to_accumulate):
|
||||
# These weighting schemes use a uniform timestep sampling and instead post-weight the loss
|
||||
loss = self.compute_loss(batch)
|
||||
accelerator.backward(loss)
|
||||
|
||||
if accelerator.sync_gradients:
|
||||
if accelerator.distributed_type == DistributedType.DEEPSPEED:
|
||||
grad_norm = self.components.transformer.get_global_grad_norm()
|
||||
# In some cases the grad norm may not return a float
|
||||
if torch.is_tensor(grad_norm):
|
||||
grad_norm = grad_norm.item()
|
||||
else:
|
||||
grad_norm = accelerator.clip_grad_norm_(
|
||||
self.components.transformer.parameters(), self.args.max_grad_norm
|
||||
)
|
||||
if torch.is_tensor(grad_norm):
|
||||
grad_norm = grad_norm.item()
|
||||
|
||||
logs["grad_norm"] = grad_norm
|
||||
|
||||
self.optimizer.step()
|
||||
self.lr_scheduler.step()
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||||
if accelerator.sync_gradients:
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
self.__maybe_save_checkpoint(global_step)
|
||||
|
||||
# Maybe run validation
|
||||
should_run_validation = (
|
||||
self.args.do_validation
|
||||
and global_step % self.args.validation_steps == 0
|
||||
)
|
||||
if should_run_validation:
|
||||
self.validate(global_step)
|
||||
|
||||
logs["loss"] = loss.detach().item()
|
||||
logs["lr"] = self.lr_scheduler.get_last_lr()[0]
|
||||
progress_bar.set_postfix(logs)
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
if global_step >= self.args.train_steps:
|
||||
break
|
||||
|
||||
memory_statistics = get_memory_statistics()
|
||||
logger.info(f"Memory after epoch {epoch + 1}: {json.dumps(memory_statistics, indent=4)}")
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
self.__maybe_save_checkpoint(global_step, must_save=True)
|
||||
if self.args.do_validation:
|
||||
self.validate(global_step)
|
||||
|
||||
del self.components
|
||||
free_memory()
|
||||
memory_statistics = get_memory_statistics()
|
||||
logger.info(f"Memory after training end: {json.dumps(memory_statistics, indent=4)}")
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
def validate(self, step: int) -> None:
|
||||
logger.info("Starting validation")
|
||||
|
||||
accelerator = self.accelerator
|
||||
num_validation_samples = len(self.state.validation_prompts)
|
||||
|
||||
if num_validation_samples == 0:
|
||||
logger.warning("No validation samples found. Skipping validation.")
|
||||
return
|
||||
|
||||
self.components.transformer.eval()
|
||||
|
||||
memory_statistics = get_memory_statistics()
|
||||
logger.info(f"Memory before validation start: {json.dumps(memory_statistics, indent=4)}")
|
||||
|
||||
all_processes_artifacts = []
|
||||
for i in range(num_validation_samples):
|
||||
# Skip current validation on all processes but one
|
||||
if i % accelerator.num_processes != accelerator.process_index:
|
||||
continue
|
||||
|
||||
prompt = self.state.validation_prompts[i]
|
||||
image = self.state.validation_images[i]
|
||||
video = self.state.validation_videos[i]
|
||||
|
||||
if image is not None:
|
||||
image = preprocess_image_with_resize(
|
||||
image, self.state.train_height, self.state.train_width
|
||||
)
|
||||
# Convert image tensor (C, H, W) to PIL images
|
||||
image = image.to(torch.uint8)
|
||||
image = image.permute(1, 2, 0).cpu().numpy()
|
||||
image = Image.fromarray(image)
|
||||
|
||||
if video is not None:
|
||||
video = preprocess_video_with_resize(
|
||||
video, self.state.train_frames, self.state.train_height, self.state.train_width
|
||||
)
|
||||
# Convert video tensor (F, C, H, W) to list of PIL images
|
||||
video = (video * 255).round().clamp(0, 255).to(torch.uint8)
|
||||
video = [Image.fromarray(frame.permute(1,2,0).cpu().numpy()) for frame in video]
|
||||
|
||||
logger.debug(
|
||||
f"Validating sample {i + 1}/{num_validation_samples} on process {accelerator.process_index}. Prompt: {prompt}",
|
||||
main_process_only=False,
|
||||
)
|
||||
validation_artifacts = self.validation_step({
|
||||
"prompt": prompt,
|
||||
"image": image,
|
||||
"video": video
|
||||
})
|
||||
prompt_filename = string_to_filename(prompt)[:25]
|
||||
artifacts = {
|
||||
"image": {"type": "image", "value": image},
|
||||
"video": {"type": "video", "value": video},
|
||||
}
|
||||
for i, (artifact_type, artifact_value) in enumerate(validation_artifacts):
|
||||
artifacts.update({f"artifact_{i}": {"type": artifact_type, "value": artifact_value}})
|
||||
logger.debug(
|
||||
f"Validation artifacts on process {accelerator.process_index}: {list(artifacts.keys())}",
|
||||
main_process_only=False,
|
||||
)
|
||||
|
||||
for key, value in list(artifacts.items()):
|
||||
artifact_type = value["type"]
|
||||
artifact_value = value["value"]
|
||||
if artifact_type not in ["image", "video"] or artifact_value is None:
|
||||
continue
|
||||
|
||||
extension = "png" if artifact_type == "image" else "mp4"
|
||||
filename = f"validation-{step}-{accelerator.process_index}-{prompt_filename}.{extension}"
|
||||
validation_path = self.args.output_dir / "validation_res"
|
||||
validation_path.mkdir(parents=True, exist_ok=True)
|
||||
filename = str(validation_path / filename)
|
||||
|
||||
if artifact_type == "image":
|
||||
logger.debug(f"Saving image to {filename}")
|
||||
artifact_value.save(filename)
|
||||
artifact_value = wandb.Image(filename)
|
||||
elif artifact_type == "video":
|
||||
logger.debug(f"Saving video to {filename}")
|
||||
export_to_video(artifact_value, filename, fps=self.args.gen_fps)
|
||||
artifact_value = wandb.Video(filename, caption=prompt)
|
||||
|
||||
all_processes_artifacts.append(artifact_value)
|
||||
|
||||
all_artifacts = gather_object(all_processes_artifacts)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
tracker_key = "validation"
|
||||
for tracker in accelerator.trackers:
|
||||
if tracker.name == "wandb":
|
||||
image_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Image)]
|
||||
video_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Video)]
|
||||
tracker.log(
|
||||
{
|
||||
tracker_key: {"images": image_artifacts, "videos": video_artifacts},
|
||||
},
|
||||
step=step,
|
||||
)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
free_memory()
|
||||
memory_statistics = get_memory_statistics()
|
||||
logger.info(f"Memory after validation end: {json.dumps(memory_statistics, indent=4)}")
|
||||
torch.cuda.reset_peak_memory_stats(accelerator.device)
|
||||
|
||||
self.components.transformer.train()
|
||||
|
||||
def fit(self):
|
||||
self.prepare_models()
|
||||
self.prepare_dataset()
|
||||
self.prepare_trainable_parameters()
|
||||
self.prepare_optimizer()
|
||||
self.prepare_for_training()
|
||||
if self.args.do_validation:
|
||||
self.prepare_for_validation()
|
||||
self.prepare_trackers()
|
||||
self.train()
|
||||
|
||||
def collate_fn(self, examples: List[Dict[str, Any]]):
|
||||
raise NotImplementedError
|
||||
|
||||
def load_components(self) -> Components:
|
||||
raise NotImplementedError
|
||||
|
||||
def encode_video(self, video: torch.Tensor) -> torch.Tensor:
|
||||
# shape of input video: [B, C, F, H, W], where B = 1
|
||||
raise NotImplementedError
|
||||
|
||||
def compute_loss(self, batch) -> torch.Tensor:
|
||||
raise NotImplementedError
|
||||
|
||||
def validation_step(self) -> List[Tuple[str, Image.Image | List[Image.Image]]]:
|
||||
raise NotImplementedError
|
||||
|
||||
def __get_training_dtype(self) -> torch.dtype:
|
||||
if self.args.mixed_precision == "no":
|
||||
return _DTYPE_MAP["fp32"]
|
||||
elif self.args.mixed_precision == "fp16":
|
||||
return _DTYPE_MAP["fp16"]
|
||||
elif self.args.mixed_precision == "bf16":
|
||||
return _DTYPE_MAP["bf16"]
|
||||
else:
|
||||
raise ValueError(f"Invalid mixed precision: {self.args.mixed_precision}")
|
||||
|
||||
def __move_components_to_device(self):
|
||||
components = self.components.model_dump()
|
||||
for name, component in components.items():
|
||||
if not isinstance(component, type) and hasattr(component, 'to'):
|
||||
setattr(self.components, name, component.to(self.accelerator.device))
|
||||
|
||||
def __prepare_saving_loading_hooks(self, transformer_lora_config):
|
||||
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
||||
def save_model_hook(models, weights, output_dir):
|
||||
if self.accelerator.is_main_process:
|
||||
transformer_lora_layers_to_save = None
|
||||
|
||||
for model in models:
|
||||
if isinstance(
|
||||
unwrap_model(self.accelerator, model),
|
||||
type(unwrap_model(self.accelerator, self.components.transformer)),
|
||||
):
|
||||
model = unwrap_model(self.accelerator, model)
|
||||
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
|
||||
else:
|
||||
raise ValueError(f"Unexpected save model: {model.__class__}")
|
||||
|
||||
# make sure to pop weight so that corresponding model is not saved again
|
||||
if weights:
|
||||
weights.pop()
|
||||
|
||||
self.components.pipeline_cls.save_lora_weights(
|
||||
output_dir,
|
||||
transformer_lora_layers=transformer_lora_layers_to_save,
|
||||
)
|
||||
|
||||
def load_model_hook(models, input_dir):
|
||||
if not self.accelerator.distributed_type == DistributedType.DEEPSPEED:
|
||||
while len(models) > 0:
|
||||
model = models.pop()
|
||||
if isinstance(
|
||||
unwrap_model(self.accelerator, model),
|
||||
type(unwrap_model(self.accelerator, self.components.transformer)),
|
||||
):
|
||||
transformer_ = unwrap_model(self.accelerator, model)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unexpected save model: {unwrap_model(self.accelerator, model).__class__}"
|
||||
)
|
||||
else:
|
||||
transformer_ = unwrap_model(self.accelerator, self.components.transformer).__class__.from_pretrained(
|
||||
self.args.model_path, subfolder="transformer"
|
||||
)
|
||||
transformer_.add_adapter(transformer_lora_config)
|
||||
|
||||
lora_state_dict = self.components.pipeline_cls.lora_state_dict(input_dir)
|
||||
transformer_state_dict = {
|
||||
f'{k.replace("transformer.", "")}': v
|
||||
for k, v in lora_state_dict.items()
|
||||
if k.startswith("transformer.")
|
||||
}
|
||||
incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default")
|
||||
if incompatible_keys is not None:
|
||||
# check only for unexpected keys
|
||||
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||
if unexpected_keys:
|
||||
logger.warning(
|
||||
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
||||
f" {unexpected_keys}. "
|
||||
)
|
||||
|
||||
# Make sure the trainable params are in float32. This is again needed since the base models
|
||||
# are in `weight_dtype`. More details:
|
||||
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
|
||||
if self.args.mixed_precision == "fp16":
|
||||
# only upcast trainable parameters (LoRA) into fp32
|
||||
cast_training_params([transformer_])
|
||||
|
||||
self.accelerator.register_save_state_pre_hook(save_model_hook)
|
||||
self.accelerator.register_load_state_pre_hook(load_model_hook)
|
||||
|
||||
def __maybe_save_checkpoint(self, global_step: int, must_save: bool = False):
|
||||
if self.accelerator.distributed_type == DistributedType.DEEPSPEED or self.accelerator.is_main_process:
|
||||
if must_save or global_step % self.args.checkpointing_steps == 0:
|
||||
save_path = get_intermediate_ckpt_path(
|
||||
checkpointing_limit=self.args.checkpointing_limit,
|
||||
step=global_step,
|
||||
output_dir=self.args.output_dir,
|
||||
)
|
||||
self.accelerator.save_state(save_path)
|
5
finetune/utils/__init__.py
Normal file
5
finetune/utils/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
from .torch_utils import *
|
||||
from .optimizer_utils import *
|
||||
from .memory_utils import *
|
||||
from .checkpointing import *
|
||||
from .file_utils import *
|
53
finetune/utils/checkpointing.py
Normal file
53
finetune/utils/checkpointing.py
Normal file
@ -0,0 +1,53 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
from accelerate.logging import get_logger
|
||||
|
||||
from finetune.constants import LOG_NAME, LOG_LEVEL
|
||||
from ..utils.file_utils import find_files, delete_files
|
||||
|
||||
|
||||
logger = get_logger(LOG_NAME, LOG_LEVEL)
|
||||
|
||||
|
||||
def get_latest_ckpt_path_to_resume_from(
|
||||
resume_from_checkpoint: str | None, num_update_steps_per_epoch: int
|
||||
) -> Tuple[str | None, int, int, int]:
|
||||
if resume_from_checkpoint is None:
|
||||
initial_global_step = 0
|
||||
global_step = 0
|
||||
first_epoch = 0
|
||||
resume_from_checkpoint_path = None
|
||||
else:
|
||||
resume_from_checkpoint_path = Path(resume_from_checkpoint)
|
||||
if not resume_from_checkpoint_path.exists():
|
||||
logger.info(f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run.")
|
||||
initial_global_step = 0
|
||||
global_step = 0
|
||||
first_epoch = 0
|
||||
resume_from_checkpoint_path = None
|
||||
else:
|
||||
logger.info(f"Resuming from checkpoint {resume_from_checkpoint}")
|
||||
global_step = int(resume_from_checkpoint_path.name.split("-")[1])
|
||||
|
||||
initial_global_step = global_step
|
||||
first_epoch = global_step // num_update_steps_per_epoch
|
||||
|
||||
return resume_from_checkpoint_path, initial_global_step, global_step, first_epoch
|
||||
|
||||
|
||||
def get_intermediate_ckpt_path(checkpointing_limit: int, step: int, output_dir: str) -> str:
|
||||
# before saving state, check if this save would set us over the `checkpointing_limit`
|
||||
if checkpointing_limit is not None:
|
||||
checkpoints = find_files(output_dir, prefix="checkpoint")
|
||||
|
||||
# before we save the new checkpoint, we need to have at_most `checkpoints_total_limit - 1` checkpoints
|
||||
if len(checkpoints) >= checkpointing_limit:
|
||||
num_to_remove = len(checkpoints) - checkpointing_limit + 1
|
||||
checkpoints_to_remove = checkpoints[0:num_to_remove]
|
||||
delete_files(checkpoints_to_remove)
|
||||
|
||||
logger.info(f"Checkpointing at step {step}")
|
||||
save_path = os.path.join(output_dir, f"checkpoint-{step}")
|
||||
logger.info(f"Saving state to {save_path}")
|
||||
return save_path
|
47
finetune/utils/file_utils.py
Normal file
47
finetune/utils/file_utils.py
Normal file
@ -0,0 +1,47 @@
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Union
|
||||
from accelerate.logging import get_logger
|
||||
from finetune.constants import LOG_NAME, LOG_LEVEL
|
||||
|
||||
|
||||
logger = get_logger(LOG_NAME, LOG_LEVEL)
|
||||
|
||||
|
||||
def find_files(dir: Union[str, Path], prefix: str = "checkpoint") -> List[str]:
|
||||
if not isinstance(dir, Path):
|
||||
dir = Path(dir)
|
||||
if not dir.exists():
|
||||
return []
|
||||
checkpoints = os.listdir(dir.as_posix())
|
||||
checkpoints = [c for c in checkpoints if c.startswith(prefix)]
|
||||
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
||||
checkpoints = [dir / c for c in checkpoints]
|
||||
return checkpoints
|
||||
|
||||
|
||||
def delete_files(dirs: Union[str, List[str], Path, List[Path]]) -> None:
|
||||
if not isinstance(dirs, list):
|
||||
dirs = [dirs]
|
||||
dirs = [Path(d) if isinstance(d, str) else d for d in dirs]
|
||||
logger.info(f"Deleting files: {dirs}")
|
||||
for dir in dirs:
|
||||
if not dir.exists():
|
||||
continue
|
||||
shutil.rmtree(dir, ignore_errors=True)
|
||||
|
||||
|
||||
def string_to_filename(s: str) -> str:
|
||||
return (
|
||||
s.replace(" ", "-")
|
||||
.replace("/", "-")
|
||||
.replace(":", "-")
|
||||
.replace(".", "-")
|
||||
.replace(",", "-")
|
||||
.replace(";", "-")
|
||||
.replace("!", "-")
|
||||
.replace("?", "-")
|
||||
)
|
60
finetune/utils/memory_utils.py
Normal file
60
finetune/utils/memory_utils.py
Normal file
@ -0,0 +1,60 @@
|
||||
import gc
|
||||
import torch
|
||||
|
||||
from typing import Any, Dict, Union
|
||||
from accelerate.logging import get_logger
|
||||
|
||||
from finetune.constants import LOG_NAME, LOG_LEVEL
|
||||
|
||||
|
||||
logger = get_logger(LOG_NAME, LOG_LEVEL)
|
||||
|
||||
|
||||
def get_memory_statistics(precision: int = 3) -> Dict[str, Any]:
|
||||
memory_allocated = None
|
||||
memory_reserved = None
|
||||
max_memory_allocated = None
|
||||
max_memory_reserved = None
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.cuda.current_device()
|
||||
memory_allocated = torch.cuda.memory_allocated(device)
|
||||
memory_reserved = torch.cuda.memory_reserved(device)
|
||||
max_memory_allocated = torch.cuda.max_memory_allocated(device)
|
||||
max_memory_reserved = torch.cuda.max_memory_reserved(device)
|
||||
|
||||
elif torch.mps.is_available():
|
||||
memory_allocated = torch.mps.current_allocated_memory()
|
||||
|
||||
else:
|
||||
logger.warning("No CUDA, MPS, or ROCm device found. Memory statistics are not available.")
|
||||
|
||||
return {
|
||||
"memory_allocated": round(bytes_to_gigabytes(memory_allocated), ndigits=precision),
|
||||
"memory_reserved": round(bytes_to_gigabytes(memory_reserved), ndigits=precision),
|
||||
"max_memory_allocated": round(bytes_to_gigabytes(max_memory_allocated), ndigits=precision),
|
||||
"max_memory_reserved": round(bytes_to_gigabytes(max_memory_reserved), ndigits=precision),
|
||||
}
|
||||
|
||||
|
||||
def bytes_to_gigabytes(x: int) -> float:
|
||||
if x is not None:
|
||||
return x / 1024**3
|
||||
|
||||
|
||||
def free_memory() -> None:
|
||||
if torch.cuda.is_available():
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
# TODO(aryan): handle non-cuda devices
|
||||
|
||||
|
||||
def make_contiguous(x: Union[torch.Tensor, Dict[str, torch.Tensor]]) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
|
||||
if isinstance(x, torch.Tensor):
|
||||
return x.contiguous()
|
||||
elif isinstance(x, dict):
|
||||
return {k: make_contiguous(v) for k, v in x.items()}
|
||||
else:
|
||||
return x
|
180
finetune/utils/optimizer_utils.py
Normal file
180
finetune/utils/optimizer_utils.py
Normal file
@ -0,0 +1,180 @@
|
||||
import inspect
|
||||
import torch
|
||||
|
||||
from accelerate.logging import get_logger
|
||||
|
||||
from finetune.constants import LOG_NAME, LOG_LEVEL
|
||||
|
||||
|
||||
logger = get_logger(LOG_NAME, LOG_LEVEL)
|
||||
|
||||
|
||||
def get_optimizer(
|
||||
params_to_optimize,
|
||||
optimizer_name: str = "adam",
|
||||
learning_rate: float = 1e-3,
|
||||
beta1: float = 0.9,
|
||||
beta2: float = 0.95,
|
||||
beta3: float = 0.98,
|
||||
epsilon: float = 1e-8,
|
||||
weight_decay: float = 1e-4,
|
||||
prodigy_decouple: bool = False,
|
||||
prodigy_use_bias_correction: bool = False,
|
||||
prodigy_safeguard_warmup: bool = False,
|
||||
use_8bit: bool = False,
|
||||
use_4bit: bool = False,
|
||||
use_torchao: bool = False,
|
||||
use_deepspeed: bool = False,
|
||||
use_cpu_offload_optimizer: bool = False,
|
||||
offload_gradients: bool = False,
|
||||
) -> torch.optim.Optimizer:
|
||||
optimizer_name = optimizer_name.lower()
|
||||
|
||||
# Use DeepSpeed optimzer
|
||||
if use_deepspeed:
|
||||
from accelerate.utils import DummyOptim
|
||||
|
||||
return DummyOptim(
|
||||
params_to_optimize,
|
||||
lr=learning_rate,
|
||||
betas=(beta1, beta2),
|
||||
eps=epsilon,
|
||||
weight_decay=weight_decay,
|
||||
)
|
||||
|
||||
if use_8bit and use_4bit:
|
||||
raise ValueError("Cannot set both `use_8bit` and `use_4bit` to True.")
|
||||
|
||||
if (use_torchao and (use_8bit or use_4bit)) or use_cpu_offload_optimizer:
|
||||
try:
|
||||
import torchao
|
||||
|
||||
torchao.__version__
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"To use optimizers from torchao, please install the torchao library: `USE_CPP=0 pip install torchao`."
|
||||
)
|
||||
|
||||
if not use_torchao and use_4bit:
|
||||
raise ValueError("4-bit Optimizers are only supported with torchao.")
|
||||
|
||||
# Optimizer creation
|
||||
supported_optimizers = ["adam", "adamw", "prodigy", "came"]
|
||||
if optimizer_name not in supported_optimizers:
|
||||
logger.warning(
|
||||
f"Unsupported choice of optimizer: {optimizer_name}. Supported optimizers include {supported_optimizers}. Defaulting to `AdamW`."
|
||||
)
|
||||
optimizer_name = "adamw"
|
||||
|
||||
if (use_8bit or use_4bit) and optimizer_name not in ["adam", "adamw"]:
|
||||
raise ValueError("`use_8bit` and `use_4bit` can only be used with the Adam and AdamW optimizers.")
|
||||
|
||||
if use_8bit:
|
||||
try:
|
||||
import bitsandbytes as bnb
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
||||
)
|
||||
|
||||
if optimizer_name == "adamw":
|
||||
if use_torchao:
|
||||
from torchao.prototype.low_bit_optim import AdamW4bit, AdamW8bit
|
||||
|
||||
optimizer_class = AdamW8bit if use_8bit else AdamW4bit if use_4bit else torch.optim.AdamW
|
||||
else:
|
||||
optimizer_class = bnb.optim.AdamW8bit if use_8bit else torch.optim.AdamW
|
||||
|
||||
init_kwargs = {
|
||||
"betas": (beta1, beta2),
|
||||
"eps": epsilon,
|
||||
"weight_decay": weight_decay,
|
||||
}
|
||||
|
||||
elif optimizer_name == "adam":
|
||||
if use_torchao:
|
||||
from torchao.prototype.low_bit_optim import Adam4bit, Adam8bit
|
||||
|
||||
optimizer_class = Adam8bit if use_8bit else Adam4bit if use_4bit else torch.optim.Adam
|
||||
else:
|
||||
optimizer_class = bnb.optim.Adam8bit if use_8bit else torch.optim.Adam
|
||||
|
||||
init_kwargs = {
|
||||
"betas": (beta1, beta2),
|
||||
"eps": epsilon,
|
||||
"weight_decay": weight_decay,
|
||||
}
|
||||
|
||||
elif optimizer_name == "prodigy":
|
||||
try:
|
||||
import prodigyopt
|
||||
except ImportError:
|
||||
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")
|
||||
|
||||
optimizer_class = prodigyopt.Prodigy
|
||||
|
||||
if learning_rate <= 0.1:
|
||||
logger.warning(
|
||||
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
|
||||
)
|
||||
|
||||
init_kwargs = {
|
||||
"lr": learning_rate,
|
||||
"betas": (beta1, beta2),
|
||||
"beta3": beta3,
|
||||
"eps": epsilon,
|
||||
"weight_decay": weight_decay,
|
||||
"decouple": prodigy_decouple,
|
||||
"use_bias_correction": prodigy_use_bias_correction,
|
||||
"safeguard_warmup": prodigy_safeguard_warmup,
|
||||
}
|
||||
|
||||
elif optimizer_name == "came":
|
||||
try:
|
||||
import came_pytorch
|
||||
except ImportError:
|
||||
raise ImportError("To use CAME, please install the came-pytorch library: `pip install came-pytorch`")
|
||||
|
||||
optimizer_class = came_pytorch.CAME
|
||||
|
||||
init_kwargs = {
|
||||
"lr": learning_rate,
|
||||
"eps": (1e-30, 1e-16),
|
||||
"betas": (beta1, beta2, beta3),
|
||||
"weight_decay": weight_decay,
|
||||
}
|
||||
|
||||
if use_cpu_offload_optimizer:
|
||||
from torchao.prototype.low_bit_optim import CPUOffloadOptimizer
|
||||
|
||||
if "fused" in inspect.signature(optimizer_class.__init__).parameters:
|
||||
init_kwargs.update({"fused": True})
|
||||
|
||||
optimizer = CPUOffloadOptimizer(
|
||||
params_to_optimize, optimizer_class=optimizer_class, offload_gradients=offload_gradients, **init_kwargs
|
||||
)
|
||||
else:
|
||||
optimizer = optimizer_class(params_to_optimize, **init_kwargs)
|
||||
|
||||
return optimizer
|
||||
|
||||
|
||||
def gradient_norm(parameters):
|
||||
norm = 0
|
||||
for param in parameters:
|
||||
if param.grad is None:
|
||||
continue
|
||||
local_norm = param.grad.detach().data.norm(2)
|
||||
norm += local_norm.item() ** 2
|
||||
norm = norm**0.5
|
||||
return norm
|
||||
|
||||
|
||||
def max_gradient(parameters):
|
||||
max_grad_value = float("-inf")
|
||||
for param in parameters:
|
||||
if param.grad is None:
|
||||
continue
|
||||
local_max_grad = param.grad.detach().data.abs().max()
|
||||
max_grad_value = max(max_grad_value, local_max_grad.item())
|
||||
return max_grad_value
|
52
finetune/utils/torch_utils.py
Normal file
52
finetune/utils/torch_utils.py
Normal file
@ -0,0 +1,52 @@
|
||||
from typing import Dict, Optional, Union, List
|
||||
|
||||
import torch
|
||||
from accelerate import Accelerator
|
||||
from diffusers.utils.torch_utils import is_compiled_module
|
||||
|
||||
|
||||
def unwrap_model(accelerator: Accelerator, model):
|
||||
model = accelerator.unwrap_model(model)
|
||||
model = model._orig_mod if is_compiled_module(model) else model
|
||||
return model
|
||||
|
||||
|
||||
def align_device_and_dtype(
|
||||
x: Union[torch.Tensor, Dict[str, torch.Tensor]],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
if isinstance(x, torch.Tensor):
|
||||
if device is not None:
|
||||
x = x.to(device)
|
||||
if dtype is not None:
|
||||
x = x.to(dtype)
|
||||
elif isinstance(x, dict):
|
||||
if device is not None:
|
||||
x = {k: align_device_and_dtype(v, device, dtype) for k, v in x.items()}
|
||||
if dtype is not None:
|
||||
x = {k: align_device_and_dtype(v, device, dtype) for k, v in x.items()}
|
||||
return x
|
||||
|
||||
|
||||
def expand_tensor_to_dims(tensor, ndim):
|
||||
while len(tensor.shape) < ndim:
|
||||
tensor = tensor.unsqueeze(-1)
|
||||
return tensor
|
||||
|
||||
|
||||
def cast_training_params(model: Union[torch.nn.Module, List[torch.nn.Module]], dtype=torch.float32):
|
||||
"""
|
||||
Casts the training parameters of the model to the specified data type.
|
||||
|
||||
Args:
|
||||
model: The PyTorch model whose parameters will be cast.
|
||||
dtype: The data type to which the model parameters will be cast.
|
||||
"""
|
||||
if not isinstance(model, list):
|
||||
model = [model]
|
||||
for m in model:
|
||||
for param in m.parameters():
|
||||
# only upcast trainable parameters into fp32
|
||||
if param.requires_grad:
|
||||
param.data = param.to(dtype)
|
Loading…
x
Reference in New Issue
Block a user