mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 19:41:59 +08:00
update README_ja.md, README.md
This commit is contained in:
parent
c6b5eeb586
commit
9355821548
234
sat/README.md
234
sat/README.md
@ -11,13 +11,13 @@ This code is the framework used by the team to train the model. It has few comme
|
||||
|
||||
## Inference Model
|
||||
|
||||
1. Ensure that you have correctly installed the dependencies required by this folder.
|
||||
### 1. Ensure that you have correctly installed the dependencies required by this folder.
|
||||
|
||||
```shell
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
2. Download the model weights
|
||||
### 2. Download the model weights
|
||||
|
||||
First, go to the SAT mirror to download the dependencies.
|
||||
|
||||
@ -44,9 +44,12 @@ Then unzip, the model structure should look like this:
|
||||
└── 3d-vae.pt
|
||||
```
|
||||
|
||||
Next, clone the T5 model, which is not used for training and fine-tuning, but must be used.
|
||||
Due to large size of model weight file, using `git lfs` is recommended. Installation of `git lfs` can be found [here](https://github.com/git-lfs/git-lfs?tab=readme-ov-file#installing)
|
||||
|
||||
```
|
||||
Next, clone the T5 model, which is not used for training and fine-tuning, but must be used.
|
||||
> T5 model is available on [Modelscope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b) as well.
|
||||
|
||||
```shell
|
||||
git clone https://huggingface.co/THUDM/CogVideoX-2b.git
|
||||
mkdir t5-v1_1-xxl
|
||||
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
|
||||
@ -68,6 +71,229 @@ loading it into Deepspeed in Finetune.
|
||||
0 directories, 8 files
|
||||
```
|
||||
|
||||
Here is the English translation of the provided text:
|
||||
|
||||
### 3. Modify the file in `configs/cogvideox_2b.yaml`.
|
||||
|
||||
```yaml
|
||||
model:
|
||||
scale_factor: 1.15258426
|
||||
disable_first_stage_autocast: true
|
||||
log_keys:
|
||||
- txt
|
||||
|
||||
denoiser_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
||||
params:
|
||||
num_idx: 1000
|
||||
quantize_c_noise: False
|
||||
|
||||
weighting_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
|
||||
scaling_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
|
||||
params:
|
||||
shift_scale: 3.0
|
||||
|
||||
network_config:
|
||||
target: dit_video_concat.DiffusionTransformer
|
||||
params:
|
||||
time_embed_dim: 512
|
||||
elementwise_affine: True
|
||||
num_frames: 49
|
||||
time_compressed_rate: 4
|
||||
latent_width: 90
|
||||
latent_height: 60
|
||||
num_layers: 30
|
||||
patch_size: 2
|
||||
in_channels: 16
|
||||
out_channels: 16
|
||||
hidden_size: 1920
|
||||
adm_in_channels: 256
|
||||
num_attention_heads: 30
|
||||
|
||||
transformer_args:
|
||||
checkpoint_activations: True ## using gradient checkpointing
|
||||
vocab_size: 1
|
||||
max_sequence_length: 64
|
||||
layernorm_order: pre
|
||||
skip_init: false
|
||||
model_parallel_size: 1
|
||||
is_decoder: false
|
||||
|
||||
modules:
|
||||
pos_embed_config:
|
||||
target: dit_video_concat.Basic3DPositionEmbeddingMixin
|
||||
params:
|
||||
text_length: 226
|
||||
height_interpolation: 1.875
|
||||
width_interpolation: 1.875
|
||||
|
||||
patch_embed_config:
|
||||
target: dit_video_concat.ImagePatchEmbeddingMixin
|
||||
params:
|
||||
text_hidden_size: 4096
|
||||
|
||||
adaln_layer_config:
|
||||
target: dit_video_concat.AdaLNMixin
|
||||
params:
|
||||
qk_ln: True
|
||||
|
||||
final_layer_config:
|
||||
target: dit_video_concat.FinalLayerMixin
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
- is_trainable: false
|
||||
input_key: txt
|
||||
ucg_rate: 0.1
|
||||
target: sgm.modules.encoders.modules.FrozenT5Embedder
|
||||
params:
|
||||
model_dir: "{absolute_path/to/your/t5-v1_1-xxl}/t5-v1_1-xxl" # Absolute path to the CogVideoX-2b/t5-v1_1-xxl weights folder
|
||||
max_length: 226
|
||||
|
||||
first_stage_config:
|
||||
target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper
|
||||
params:
|
||||
cp_size: 1
|
||||
ckpt_path: "{absolute_path/to/your/t5-v1_1-xxl}/CogVideoX-2b-sat/vae/3d-vae.pt" # Absolute path to the CogVideoX-2b-sat/vae/3d-vae.pt folder
|
||||
ignore_keys: [ 'loss' ]
|
||||
|
||||
loss_config:
|
||||
target: torch.nn.Identity
|
||||
|
||||
regularizer_config:
|
||||
target: vae_modules.regularizers.DiagonalGaussianRegularizer
|
||||
|
||||
encoder_config:
|
||||
target: vae_modules.cp_enc_dec.ContextParallelEncoder3D
|
||||
params:
|
||||
double_z: true
|
||||
z_channels: 16
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [ 1, 2, 2, 4 ]
|
||||
attn_resolutions: [ ]
|
||||
num_res_blocks: 3
|
||||
dropout: 0.0
|
||||
gather_norm: True
|
||||
|
||||
decoder_config:
|
||||
target: vae_modules.cp_enc_dec.ContextParallelDecoder3D
|
||||
params:
|
||||
double_z: True
|
||||
z_channels: 16
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [ 1, 2, 2, 4 ]
|
||||
attn_resolutions: [ ]
|
||||
num_res_blocks: 3
|
||||
dropout: 0.0
|
||||
gather_norm: False
|
||||
|
||||
loss_fn_config:
|
||||
target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss
|
||||
params:
|
||||
offset_noise_level: 0
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
||||
params:
|
||||
uniform_sampling: True
|
||||
num_idx: 1000
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
|
||||
params:
|
||||
shift_scale: 3.0
|
||||
|
||||
sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler
|
||||
params:
|
||||
num_steps: 50
|
||||
verbose: True
|
||||
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
|
||||
params:
|
||||
shift_scale: 3.0
|
||||
|
||||
guider_config:
|
||||
target: sgm.modules.diffusionmodules.guiders.DynamicCFG
|
||||
params:
|
||||
scale: 6
|
||||
exp: 5
|
||||
num_steps: 50
|
||||
```
|
||||
|
||||
### 4. Modify the file in `configs/inference.yaml`.
|
||||
|
||||
```yaml
|
||||
args:
|
||||
latent_channels: 16
|
||||
mode: inference
|
||||
load: "{absolute_path/to/your}/transformer" # Absolute path to the CogVideoX-2b-sat/transformer folder
|
||||
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
|
||||
|
||||
batch_size: 1
|
||||
input_type: txt # You can choose txt for pure text input, or change to cli for command line input
|
||||
input_file: configs/test.txt # Pure text file, which can be edited
|
||||
sampling_num_frames: 13 # Must be 13, 11 or 9
|
||||
sampling_fps: 8
|
||||
fp16: True # For CogVideoX-2B
|
||||
# bf16: True # For CogVideoX-5B
|
||||
output_dir: outputs/
|
||||
force_inference: True
|
||||
```
|
||||
|
||||
+ Modify `configs/test.txt` if multiple prompts is required, in which each line makes a prompt.
|
||||
+ For better prompt formatting, refer to [convert_demo.py](../inference/convert_demo.py), for which you should set the OPENAI_API_KEY as your environmental variable.
|
||||
+ Modify `input_type` in `configs/inference.yaml` if use command line as prompt iuput.
|
||||
|
||||
```yaml
|
||||
input_type: cli
|
||||
```
|
||||
|
||||
This allows input from the command line as prompts.
|
||||
|
||||
Change `output_dir` if you wish to modify the address of the output video
|
||||
|
||||
```yaml
|
||||
output_dir: outputs/
|
||||
```
|
||||
|
||||
It is saved by default in the `.outputs/` folder.
|
||||
|
||||
### 5. Run the inference code to perform inference.
|
||||
|
||||
```shell
|
||||
bash inference.sh
|
||||
```
|
||||
|
||||
## Fine-tuning the Model
|
||||
|
||||
### Preparing the Dataset
|
||||
|
||||
The dataset format should be as follows:
|
||||
|
||||
```
|
||||
.
|
||||
├── labels
|
||||
│ ├── 1.txt
|
||||
│ ├── 2.txt
|
||||
│ ├── ...
|
||||
└── videos
|
||||
├── 1.mp4
|
||||
├── 2.mp4
|
||||
├── ...
|
||||
```
|
||||
|
||||
Each text file shares the same name as its corresponding video, serving as the label for that video. Videos and labels
|
||||
should be matched one-to-one. Generally, a single video should not be associated with multiple labels.
|
||||
|
||||
|
206
sat/README_ja.md
206
sat/README_ja.md
@ -11,13 +11,13 @@
|
||||
|
||||
## 推論モデル
|
||||
|
||||
1. このフォルダに必要な依存関係が正しくインストールされていることを確認してください。
|
||||
### 1. このフォルダに必要な依存関係が正しくインストールされていることを確認してください。
|
||||
|
||||
```shell
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
2. モデルウェイトをダウンロードします
|
||||
### 2. モデルウェイトをダウンロードします
|
||||
|
||||
まず、SAT ミラーにアクセスして依存関係をダウンロードします。
|
||||
|
||||
@ -44,10 +44,18 @@ unzip transformer.zip
|
||||
└── 3d-vae.pt
|
||||
```
|
||||
|
||||
次に、T5 モデルをクローンします。これはトレーニングやファインチューニングには使用されませんが、使用する必要があります。
|
||||
|
||||
モデルの重みファイルが大きいため、`git lfs`を使用することをお勧めいたします。`git lfs`のインストールについては、[こちら](https://github.com/git-lfs/git-lfs?tab=readme-ov-file#installing)をご参照ください。
|
||||
```shell
|
||||
git lfs install
|
||||
```
|
||||
git clone https://huggingface.co/THUDM/CogVideoX-2b.git
|
||||
|
||||
次に、T5 モデルをクローンします。これはトレーニングやファインチューニングには使用されませんが、使用する必要があります。
|
||||
> モデルを複製する際には、[Modelscope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b)のモデルファイルの場所もご使用いただけます。
|
||||
|
||||
```shell
|
||||
git clone https://huggingface.co/THUDM/CogVideoX-2b.git #ハギングフェイス(huggingface.org)からモデルをダウンロードいただきます
|
||||
# git clone https://www.modelscope.cn/ZhipuAI/CogVideoX-2b.git #Modelscopeからモデルをダウンロードいただきます
|
||||
mkdir t5-v1_1-xxl
|
||||
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
|
||||
```
|
||||
@ -67,28 +75,182 @@ mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
|
||||
0 directories, 8 files
|
||||
```
|
||||
|
||||
3. `configs/cogvideox_2b_infer.yaml` ファイルを変更します。
|
||||
### 3. `configs/cogvideox_2b.yaml` ファイルを変更します。
|
||||
|
||||
```yaml
|
||||
load: "{your_CogVideoX-2b-sat_path}/transformer" ## Transformer モデルパス
|
||||
model:
|
||||
scale_factor: 1.15258426
|
||||
disable_first_stage_autocast: true
|
||||
log_keys:
|
||||
- txt
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
- is_trainable: false
|
||||
input_key: txt
|
||||
ucg_rate: 0.1
|
||||
target: sgm.modules.encoders.modules.FrozenT5Embedder
|
||||
denoiser_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
||||
params:
|
||||
num_idx: 1000
|
||||
quantize_c_noise: False
|
||||
|
||||
weighting_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
|
||||
scaling_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
|
||||
params:
|
||||
model_dir: "google/t5-v1_1-xxl" ## T5 モデルパス
|
||||
max_length: 226
|
||||
shift_scale: 3.0
|
||||
|
||||
first_stage_config:
|
||||
target: sgm.models.autoencoder.VideoAutoencoderInferenceWrapper
|
||||
params:
|
||||
cp_size: 1
|
||||
ckpt_path: "{your_CogVideoX-2b-sat_path}/vae/3d-vae.pt" ## VAE モデルパス
|
||||
network_config:
|
||||
target: dit_video_concat.DiffusionTransformer
|
||||
params:
|
||||
time_embed_dim: 512
|
||||
elementwise_affine: True
|
||||
num_frames: 49
|
||||
time_compressed_rate: 4
|
||||
latent_width: 90
|
||||
latent_height: 60
|
||||
num_layers: 30
|
||||
patch_size: 2
|
||||
in_channels: 16
|
||||
out_channels: 16
|
||||
hidden_size: 1920
|
||||
adm_in_channels: 256
|
||||
num_attention_heads: 30
|
||||
|
||||
transformer_args:
|
||||
checkpoint_activations: True ## グラデーション チェックポイントを使用する
|
||||
vocab_size: 1
|
||||
max_sequence_length: 64
|
||||
layernorm_order: pre
|
||||
skip_init: false
|
||||
model_parallel_size: 1
|
||||
is_decoder: false
|
||||
|
||||
modules:
|
||||
pos_embed_config:
|
||||
target: dit_video_concat.Basic3DPositionEmbeddingMixin
|
||||
params:
|
||||
text_length: 226
|
||||
height_interpolation: 1.875
|
||||
width_interpolation: 1.875
|
||||
|
||||
patch_embed_config:
|
||||
target: dit_video_concat.ImagePatchEmbeddingMixin
|
||||
params:
|
||||
text_hidden_size: 4096
|
||||
|
||||
adaln_layer_config:
|
||||
target: dit_video_concat.AdaLNMixin
|
||||
params:
|
||||
qk_ln: True
|
||||
|
||||
final_layer_config:
|
||||
target: dit_video_concat.FinalLayerMixin
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
- is_trainable: false
|
||||
input_key: txt
|
||||
ucg_rate: 0.1
|
||||
target: sgm.modules.encoders.modules.FrozenT5Embedder
|
||||
params:
|
||||
model_dir: "{absolute_path/to/your/t5-v1_1-xxl}/t5-v1_1-xxl" # CogVideoX-2b/t5-v1_1-xxlフォルダの絶対パス
|
||||
max_length: 226
|
||||
|
||||
first_stage_config:
|
||||
target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper
|
||||
params:
|
||||
cp_size: 1
|
||||
ckpt_path: "{absolute_path/to/your/t5-v1_1-xxl}/CogVideoX-2b-sat/vae/3d-vae.pt" # CogVideoX-2b-sat/vae/3d-vae.ptフォルダの絶対パス
|
||||
ignore_keys: [ 'loss' ]
|
||||
|
||||
loss_config:
|
||||
target: torch.nn.Identity
|
||||
|
||||
regularizer_config:
|
||||
target: vae_modules.regularizers.DiagonalGaussianRegularizer
|
||||
|
||||
encoder_config:
|
||||
target: vae_modules.cp_enc_dec.ContextParallelEncoder3D
|
||||
params:
|
||||
double_z: true
|
||||
z_channels: 16
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [ 1, 2, 2, 4 ]
|
||||
attn_resolutions: [ ]
|
||||
num_res_blocks: 3
|
||||
dropout: 0.0
|
||||
gather_norm: True
|
||||
|
||||
decoder_config:
|
||||
target: vae_modules.cp_enc_dec.ContextParallelDecoder3D
|
||||
params:
|
||||
double_z: True
|
||||
z_channels: 16
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [ 1, 2, 2, 4 ]
|
||||
attn_resolutions: [ ]
|
||||
num_res_blocks: 3
|
||||
dropout: 0.0
|
||||
gather_norm: False
|
||||
|
||||
loss_fn_config:
|
||||
target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss
|
||||
params:
|
||||
offset_noise_level: 0
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
||||
params:
|
||||
uniform_sampling: True
|
||||
num_idx: 1000
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
|
||||
params:
|
||||
shift_scale: 3.0
|
||||
|
||||
sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler
|
||||
params:
|
||||
num_steps: 50
|
||||
verbose: True
|
||||
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
|
||||
params:
|
||||
shift_scale: 3.0
|
||||
|
||||
guider_config:
|
||||
target: sgm.modules.diffusionmodules.guiders.DynamicCFG
|
||||
params:
|
||||
scale: 6
|
||||
exp: 5
|
||||
num_steps: 50
|
||||
```
|
||||
### 4. `configs/inference.yaml` ファイルを変更します。
|
||||
|
||||
```yaml
|
||||
args:
|
||||
latent_channels: 16
|
||||
mode: inference
|
||||
load: "{absolute_path/to/your}/transformer" # CogVideoX-2b-sat/transformerフォルダの絶対パス
|
||||
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
|
||||
|
||||
batch_size: 1
|
||||
input_type: txt #TXTのテキストファイルを入力として選択されたり、CLIコマンドラインを入力として変更されたりいただけます
|
||||
input_file: configs/test.txt #テキストファイルのパスで、これに対して編集がさせていただけます
|
||||
sampling_num_frames: 13 # Must be 13, 11 or 9
|
||||
sampling_fps: 8
|
||||
fp16: True # For CogVideoX-2B
|
||||
# bf16: True # For CogVideoX-5B
|
||||
output_dir: outputs/
|
||||
force_inference: True
|
||||
```
|
||||
|
||||
+ 複数のプロンプトを保存するために txt を使用する場合は、`configs/test.txt`
|
||||
@ -110,7 +272,7 @@ output_dir: outputs/
|
||||
|
||||
デフォルトでは `.outputs/` フォルダに保存されます。
|
||||
|
||||
4. 推論コードを実行して推論を開始します。
|
||||
### 5. 推論コードを実行して推論を開始します。
|
||||
|
||||
```shell
|
||||
bash inference.sh
|
||||
|
@ -233,6 +233,7 @@ model:
|
||||
```
|
||||
|
||||
### 4. 修改`configs/inference.yaml`中的文件。
|
||||
|
||||
```yaml
|
||||
args:
|
||||
latent_channels: 16
|
||||
|
Loading…
x
Reference in New Issue
Block a user