feat: add schemas module for configuration and state management

Add Pydantic models to handle:
- CLI arguments and configuration (Args)
- Model components and pipeline (Components)
- Training state and parameters (State)
This commit is contained in:
OleehyO 2024-12-31 17:25:02 +00:00
parent 45d40450a1
commit 91d79fd9a4
4 changed files with 205 additions and 0 deletions

View File

@ -0,0 +1,5 @@
from .args import Args
from .state import State
from .components import Components
__all__ = ["Args", "State", "Components"]

147
finetune/schemas/args.py Normal file
View File

@ -0,0 +1,147 @@
import datetime
import argparse
from typing import Dict, Any, Literal, List, Tuple
from pydantic import BaseModel, field_validator
from pathlib import Path
class Args(BaseModel):
########## Model ##########
model_path: Path
model_name: str
model_type: Literal["i2v", "t2v"]
training_type: Literal["lora", "sft"] = "lora"
########## Output ##########
output_dir: Path = Path("train_results/{:%Y-%m-%d-%H-%M-%S}".format(datetime.datetime.now()))
report_to: Literal["tensorboard", "wandb", "all"] | None = None
tracker_name: str = "finetrainer-cogvideo"
########## Data ###########
data_root: Path
caption_column: Path
image_column: Path | None = None
video_column: Path
########## Training #########
resume_from_checkpoint: Path | None = None
seed: int | None = None
train_epochs: int
train_steps: int | None = None
checkpointing_steps: int = 500
checkpointing_limit: int = 10
batch_size: int
gradient_accumulation_steps: int = 1
train_resolution: Tuple[int, int, int] # shape: (frames, height, width)
#### deprecated args: video_resolution_buckets
# if use bucket for training, should not be None
# Note1: At least one frame rate in the bucket must be less than or equal to the frame rate of any video in the dataset
# Note2: For cogvideox, cogvideox1.5
# The frame rate set in the bucket must be an integer multiple of 8 (spatial_compression_rate[4] * path_t[2] = 8)
# The height and width set in the bucket must be an integer multiple of 8 (temporal_compression_rate[8])
# video_resolution_buckets: List[Tuple[int, int, int]] | None = None
mixed_precision: Literal["no", "fp16", "bf16"]
learning_rate: float = 2e-5
optimizer: str = "adamw"
beta1: float = 0.9
beta2: float = 0.95
beta3: float = 0.98
epsilon: float = 1e-8
weight_decay: float = 1e-4
max_grad_norm: float = 1.0
lr_scheduler: str = "constant_with_warmup"
lr_warmup_steps: int = 100
lr_num_cycles: int = 1
lr_power: float = 1.0
num_workers: int = 8
pin_memory: bool = True
gradient_checkpointing: bool = True
enable_slicing: bool = True
enable_tiling: bool = True
nccl_timeout: int = 1800
########## Lora ##########
rank: int = 128
lora_alpha: int = 64
target_modules: List[str] = ["to_q", "to_k", "to_v", "to_out.0"]
########## Validation ##########
do_validation: bool = False
validation_steps: int | None = None # if set, should be a multiple of checkpointing_steps
validation_dir: Path | None # if set do_validation, should not be None
validation_prompts: str | None # if set do_validation, should not be None
validation_images: str | None # if set do_validation and model_type == i2v, should not be None
validation_videos: str | None # if set do_validation and model_type == v2v, should not be None
gen_fps: int = 15
#### deprecated args: gen_video_resolution
# 1. If set do_validation, should not be None
# 2. Suggest selecting the bucket from `video_resolution_buckets` that is closest to the resolution you have chosen for fine-tuning
# or the resolution recommended by the model
# 3. Note: For cogvideox, cogvideox1.5
# The frame rate set in the bucket must be an integer multiple of 8 (spatial_compression_rate[4] * path_t[2] = 8)
# The height and width set in the bucket must be an integer multiple of 8 (temporal_compression_rate[8])
# gen_video_resolution: Tuple[int, int, int] | None # shape: (frames, height, width)
@classmethod
def parse_args(cls):
"""Parse command line arguments and return Args instance"""
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, required=True)
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--model_type", type=str, required=True)
parser.add_argument("--training_type", type=str, required=True)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--seed", type=int, required=True)
parser.add_argument("--nccl_timeout", type=int, required=True)
parser.add_argument("--mixed_precision", type=str, required=True)
parser.add_argument("--gradient_accumulation_steps", type=int, required=True)
parser.add_argument("--data_root", type=str, required=True)
parser.add_argument("--caption_column", type=str, required=True)
parser.add_argument("--video_column", type=str, required=True)
parser.add_argument("--image_column", type=str)
parser.add_argument("--train_resolution", type=str, required=True)
parser.add_argument("--batch_size", type=int, required=True)
parser.add_argument("--num_workers", type=int, required=True)
parser.add_argument("--pin_memory", type=str, required=True)
parser.add_argument("--report_to", type=str, required=True)
parser.add_argument("--train_epochs", type=int, required=True)
parser.add_argument("--checkpointing_steps", type=int, required=True)
parser.add_argument("--checkpointing_limit", type=int, required=True)
parser.add_argument("--do_validation", type=bool)
parser.add_argument("--validation_steps", type=int)
parser.add_argument("--validation_dir", type=str)
parser.add_argument("--validation_prompts", type=str)
parser.add_argument("--validation_images", type=str)
parser.add_argument("--validation_videos", type=str)
parser.add_argument("--gen_fps", type=int)
parser.add_argument("--resume_from_checkpoint", type=str)
args = parser.parse_args()
# Convert video_resolution_buckets string to list of tuples
frames, height, width = args.train_resolution.split("x")
args.train_resolution = (int(frames), int(height), int(width))
return cls(**vars(args))
# @field_validator("...", mode="after")
# def foo(cls, foobar):
# ...
# @field_validator("...", mode="before")
# def bar(cls, barbar):
# ...

View File

@ -0,0 +1,27 @@
from typing import Any
from pydantic import BaseModel
class Components(BaseModel):
# pipeline cls
pipeline_cls: Any = None
# Tokenizers
tokenizer: Any = None
tokenizer_2: Any = None
tokenizer_3: Any = None
# Text encoders
text_encoder: Any = None
text_encoder_2: Any = None
text_encoder_3: Any = None
# Autoencoder
vae: Any = None
# Denoiser
transformer: Any = None
unet: Any = None
# Scheduler
scheduler: Any = None

26
finetune/schemas/state.py Normal file
View File

@ -0,0 +1,26 @@
import torch
from pathlib import Path
from typing import List, Dict, Any
from pydantic import BaseModel, field_validator
class State(BaseModel):
model_config = {"arbitrary_types_allowed": True}
train_frames: int
train_height: int
train_width: int
transformer_config: Dict[str, Any] = None
weight_dtype: torch.dtype = torch.float32
num_trainable_parameters: int = 0
overwrote_max_train_steps: bool = False
num_update_steps_per_epoch: int = 0
total_batch_size_count: int = 0
generator: torch.Generator | None = None
validation_prompts: List[str] = []
validation_images: List[Path | None] = []
validation_videos: List[Path | None] = []