feat(datasets): implement video dataset modules

- Add dataset implementations for text-to-video and image-to-video
- Include bucket sampler for efficient batch processing
- Add utility functions for data processing
- Create dataset package structure with proper initialization
This commit is contained in:
OleehyO 2024-12-27 09:57:37 +00:00
parent e3f6def234
commit 918ebb5a54
5 changed files with 609 additions and 0 deletions

View File

@ -0,0 +1,12 @@
from .i2v_dataset import I2VDatasetWithResize, I2VDatasetWithBuckets
from .t2v_dataset import T2VDatasetWithResize, T2VDatasetWithBuckets
from .bucket_sampler import BucketSampler
__all__ = [
"I2VDatasetWithResize",
"I2VDatasetWithBuckets",
"T2VDatasetWithResize",
"T2VDatasetWithBuckets",
"BucketSampler"
]

View File

@ -0,0 +1,73 @@
import random
import logging
from torch.utils.data import Sampler
from torch.utils.data import Dataset
logger = logging.getLogger(__name__)
class BucketSampler(Sampler):
r"""
PyTorch Sampler that groups 3D data by height, width and frames.
Args:
data_source (`VideoDataset`):
A PyTorch dataset object that is an instance of `VideoDataset`.
batch_size (`int`, defaults to `8`):
The batch size to use for training.
shuffle (`bool`, defaults to `True`):
Whether or not to shuffle the data in each batch before dispatching to dataloader.
drop_last (`bool`, defaults to `False`):
Whether or not to drop incomplete buckets of data after completely iterating over all data
in the dataset. If set to True, only batches that have `batch_size` number of entries will
be yielded. If set to False, it is guaranteed that all data in the dataset will be processed
and batches that do not have `batch_size` number of entries will also be yielded.
"""
def __init__(
self, data_source: Dataset, batch_size: int = 8, shuffle: bool = True, drop_last: bool = False
) -> None:
self.data_source = data_source
self.batch_size = batch_size
self.shuffle = shuffle
self.drop_last = drop_last
self.buckets = {resolution: [] for resolution in data_source.video_resolution_buckets}
self._raised_warning_for_drop_last = False
def __len__(self):
if self.drop_last and not self._raised_warning_for_drop_last:
self._raised_warning_for_drop_last = True
logger.warning(
"Calculating the length for bucket sampler is not possible when `drop_last` is set to True. This may cause problems when setting the number of epochs used for training."
)
return (len(self.data_source) + self.batch_size - 1) // self.batch_size
def __iter__(self):
for index, data in enumerate(self.data_source):
video_metadata = data["video_metadata"]
f, h, w = video_metadata["num_frames"], video_metadata["height"], video_metadata["width"]
self.buckets[(f, h, w)].append(data)
if len(self.buckets[(f, h, w)]) == self.batch_size:
if self.shuffle:
random.shuffle(self.buckets[(f, h, w)])
yield self.buckets[(f, h, w)]
del self.buckets[(f, h, w)]
self.buckets[(f, h, w)] = []
if self.drop_last:
return
for fhw, bucket in list(self.buckets.items()):
if len(bucket) == 0:
continue
if self.shuffle:
random.shuffle(bucket)
yield bucket
del self.buckets[fhw]
self.buckets[fhw] = []

View File

@ -0,0 +1,206 @@
from pathlib import Path
from typing import Any, Dict, List, Tuple
from typing_extensions import override
import torch
from accelerate.logging import get_logger
from torch.utils.data import Dataset
from torchvision import transforms
from .utils import (
load_prompts, load_videos, load_images,
preprocess_image_with_resize,
preprocess_video_with_resize,
preprocess_video_with_buckets
)
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort:skip
decord.bridge.set_bridge("torch")
logger = get_logger(__name__)
class BaseI2VDataset(Dataset):
"""
"""
def __init__(
self,
data_root: str,
caption_column: str,
video_column: str,
image_column: str,
*args,
**kwargs
) -> None:
super().__init__()
data_root = Path(data_root)
self.prompts = load_prompts(data_root / caption_column)
self.videos = load_videos(data_root / video_column)
self.images = load_images(data_root / image_column)
# Check if number of prompts matches number of videos and images
if not (len(self.videos) == len(self.prompts) == len(self.images)):
raise ValueError(
f"Expected length of prompts, videos and images to be the same but found {len(self.prompts)=}, {len(self.videos)=} and {len(self.images)=}. Please ensure that the number of caption prompts, videos and images match in your dataset."
)
# Check if all video files exist
if any(not path.is_file() for path in self.videos):
raise ValueError(
f"Some video files were not found. Please ensure that all video files exist in the dataset directory. Missing file: {next(path for path in self.videos if not path.is_file())}"
)
# Check if all image files exist
if any(not path.is_file() for path in self.images):
raise ValueError(
f"Some image files were not found. Please ensure that all image files exist in the dataset directory. Missing file: {next(path for path in self.images if not path.is_file())}"
)
def __len__(self) -> int:
return len(self.videos)
def __getitem__(self, index: int) -> Dict[str, Any]:
if isinstance(index, list):
# Here, index is actually a list of data objects that we need to return.
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
# to have information about num_frames, height and width. Since this is not stored
# as metadata, we need to read the video to get this information. You could read this
# information without loading the full video in memory, but we do it anyway. In order
# to not load the video twice (once to get the metadata, and once to return the loaded video
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
# to yield, we yield the cache data instead of indices. So, this special check ensures
# that data is not loaded a second time. PRs are welcome for improvements.
return index
prompt = self.prompts[index]
# shape of frames: [F, C, H, W]
# shape of image: [C, H, W]
frames, image = self.preprocess(self.videos[index], self.images[index])
frames = self.video_transform(frames)
image = self.image_transform(image)
return {
"prompt": prompt,
"video": frames,
"video_metadata": {
"num_frames": frames.shape[0],
"height": frames.shape[2],
"width": frames.shape[3],
},
"image": image
}
def preprocess(self, video_path: Path, image_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Loads and preprocesses a video and an image.
Args:
video_path: Path to the video file to load
image_path: Path to the image file to load
Returns:
A tuple containing:
- video(torch.Tensor) of shape [F, C, H, W] where F is number of frames,
C is number of channels, H is height and W is width
- image(torch.Tensor) of shape [C, H, W]
"""
raise NotImplementedError("Subclass must implement this method")
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
"""
Applies transformations to a video.
Args:
frames (torch.Tensor): A 4D tensor representing a video
with shape [F, C, H, W] where:
- F is number of frames
- C is number of channels (3 for RGB)
- H is height
- W is width
Returns:
torch.Tensor: The transformed video tensor
"""
raise NotImplementedError("Subclass must implement this method")
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
"""
Applies transformations to an image.
Args:
image (torch.Tensor): A 3D tensor representing an image
with shape [C, H, W] where:
- C is number of channels (3 for RGB)
- H is height
- W is width
Returns:
torch.Tensor: The transformed image tensor
"""
raise NotImplementedError("Subclass must implement this method")
class I2VDatasetWithResize(BaseI2VDataset):
"""
"""
def __init__(self, max_num_frames: int, height: int, width: int, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.max_num_frames = max_num_frames
self.height = height
self.width = width
self.__frame_transforms = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
]
)
@override
def preprocess(self, video_path: Path, image_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
video = preprocess_video_with_resize(video_path, self.max_num_frames, self.height, self.width)
image = preprocess_image_with_resize(image_path, self.height, self.width)
return video, image
@override
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
class I2VDatasetWithBuckets(BaseI2VDataset):
"""
"""
def __init__(self, video_resolution_buckets: List[Tuple[int, int, int]], *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.video_resolution_buckets = video_resolution_buckets
self.__frame_transforms = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
]
)
self.__image_transforms = self.__frame_transforms
@override
def preprocess(self, video_path: Path, image_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
video = preprocess_video_with_buckets(video_path, self.video_resolution_buckets)
image = preprocess_image_with_resize(image_path, video.shape[2], video.shape[3])
return video, image
@override
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
@override
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
return self.__image_transforms(image)

View File

@ -0,0 +1,177 @@
from pathlib import Path
from typing import Any, Dict, List, Tuple
from typing_extensions import override
import torch
from accelerate.logging import get_logger
from torch.utils.data import Dataset
from torchvision import transforms
from .utils import (
load_prompts, load_videos,
preprocess_video_with_resize,
preprocess_video_with_buckets
)
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort:skip
decord.bridge.set_bridge("torch")
logger = get_logger(__name__)
class BaseT2VDataset(Dataset):
"""
"""
def __init__(
self,
data_root: str,
caption_column: str,
video_column: str,
*args,
**kwargs
) -> None:
super().__init__()
data_root = Path(data_root)
self.prompts = load_prompts(data_root / caption_column)
self.videos = load_videos(data_root / video_column)
# Check if all video files exist
if any(not path.is_file() for path in self.videos):
raise ValueError(
f"Some video files were not found. Please ensure that all video files exist in the dataset directory. Missing file: {next(path for path in self.videos if not path.is_file())}"
)
# Check if number of prompts matches number of videos
if len(self.videos) != len(self.prompts):
raise ValueError(
f"Expected length of prompts and videos to be the same but found {len(self.prompts)=} and {len(self.videos)=}. Please ensure that the number of caption prompts and videos match in your dataset."
)
def __len__(self) -> int:
return len(self.videos)
def __getitem__(self, index: int) -> Dict[str, Any]:
if isinstance(index, list):
# Here, index is actually a list of data objects that we need to return.
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
# to have information about num_frames, height and width. Since this is not stored
# as metadata, we need to read the video to get this information. You could read this
# information without loading the full video in memory, but we do it anyway. In order
# to not load the video twice (once to get the metadata, and once to return the loaded video
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
# to yield, we yield the cache data instead of indices. So, this special check ensures
# that data is not loaded a second time. PRs are welcome for improvements.
return index
prompt = self.prompts[index]
# shape of frames: [F, C, H, W]
frames = self.preprocess(self.videos[index])
frames = self.video_transform(frames)
return {
"prompt": prompt,
"video": frames,
"video_metadata": {
"num_frames": frames.shape[0],
"height": frames.shape[2],
"width": frames.shape[3],
},
}
def preprocess(self, video_path: Path) -> torch.Tensor:
"""
Loads and preprocesses a video.
Args:
video_path: Path to the video file to load.
Returns:
torch.Tensor: Video tensor of shape [F, C, H, W] where:
- F is number of frames
- C is number of channels (3 for RGB)
- H is height
- W is width
"""
raise NotImplementedError("Subclass must implement this method")
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
"""
Applies transformations to a video.
Args:
frames (torch.Tensor): A 4D tensor representing a video
with shape [F, C, H, W] where:
- F is number of frames
- C is number of channels (3 for RGB)
- H is height
- W is width
Returns:
torch.Tensor: The transformed video tensor
"""
raise NotImplementedError("Subclass must implement this method")
class T2VDatasetWithResize(BaseT2VDataset):
"""
"""
def __init__(self, max_num_frames: int, height: int, width: int, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.max_num_frames = max_num_frames
self.height = height
self.width = width
self.__frame_transform = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
]
)
@override
def preprocess(self, video_path: Path) -> torch.Tensor:
return preprocess_video_with_resize(
video_path, self.max_num_frames, self.height, self.width,
)
@override
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
return torch.stack([self.__frame_transform(f) for f in frames], dim=0)
class T2VDatasetWithBuckets(BaseT2VDataset):
"""
"""
def __init__(self, video_resolution_buckets: List[Tuple[int, int, int]], *args, **kwargs) -> None:
"""
Args:
resolution_buckets: List of tuples representing the resolution buckets.
Each tuple contains three integers: (max_num_frames, height, width).
"""
super().__init__(*args, **kwargs)
self.video_resolution_buckets = video_resolution_buckets
self.__frame_transform = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
]
)
@override
def preprocess(self, video_path: Path) -> torch.Tensor:
return preprocess_video_with_buckets(
video_path, self.video_resolution_buckets
)
@override
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
return torch.stack([self.__frame_transform(f) for f in frames], dim=0)

141
finetune/datasets/utils.py Normal file
View File

@ -0,0 +1,141 @@
import torch
import cv2
from typing import List, Tuple
from pathlib import Path
from torchvision import transforms
from torchvision.transforms.functional import resize
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort:skip
decord.bridge.set_bridge("torch")
########## loaders ##########
def load_prompts(prompt_path: Path) -> List[str]:
with open(prompt_path, "r", encoding="utf-8") as file:
return [line.strip() for line in file.readlines() if len(line.strip()) > 0]
def load_videos(video_path: Path) -> List[Path]:
with open(video_path, "r", encoding="utf-8") as file:
return [video_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]
def load_images(image_path: Path) -> List[Path]:
with open(image_path, "r", encoding="utf-8") as file:
return [image_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]
########## preprocessors ##########
def preprocess_image_with_resize(
image_path: Path,
height: int,
width: int,
) -> torch.Tensor:
"""
Loads and resizes a single image.
Args:
image_path: Path to the image file.
height: Target height for resizing.
width: Target width for resizing.
Returns:
torch.Tensor: Image tensor with shape [C, H, W] where:
C = number of channels (3 for RGB)
H = height
W = width
"""
image = cv2.imread(image_path.as_posix())
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (width, height))
image = torch.from_numpy(image).float()
image = image.permute(2, 0, 1).contiguous()
return image
def preprocess_video_with_resize(
video_path: Path,
max_num_frames: int,
height: int,
width: int,
) -> torch.Tensor:
"""
Loads and resizes a single video.
The function processes the video through these steps:
1. If video frame count > max_num_frames, downsample frames evenly
2. If video dimensions don't match (height, width), resize frames
Args:
video_path: Path to the video file.
max_num_frames: Maximum number of frames to keep.
height: Target height for resizing.
width: Target width for resizing.
Returns:
A torch.Tensor with shape [F, C, H, W] where:
F = number of frames
C = number of channels (3 for RGB)
H = height
W = width
"""
video_reader = decord.VideoReader(uri=video_path.as_posix(), width=width, height=height)
video_num_frames = len(video_reader)
indices = list(range(0, video_num_frames, video_num_frames // max_num_frames))
frames = video_reader.get_batch(indices)
frames = frames[: max_num_frames].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
return frames
def preprocess_video_with_buckets(
video_path: Path,
resolution_buckets: List[Tuple[int, int, int]],
) -> torch.Tensor:
"""
Args:
video_path: Path to the video file.
resolution_buckets: List of tuples (num_frames, height, width) representing
available resolution buckets.
Returns:
torch.Tensor: Video tensor with shape [F, C, H, W] where:
F = number of frames
C = number of channels (3 for RGB)
H = height
W = width
The function processes the video through these steps:
1. Finds nearest frame bucket <= video frame count
2. Downsamples frames evenly to match bucket size
3. Finds nearest resolution bucket based on dimensions
4. Resizes frames to match bucket resolution
"""
video_reader = decord.VideoReader(uri=video_path.as_posix())
video_num_frames = len(video_reader)
resolution_buckets = [bucket for bucket in resolution_buckets if bucket[0] <= video_num_frames]
if len(resolution_buckets) == 0:
raise ValueError(f"video frame count in {video_path} is less than all frame buckets {resolution_buckets}")
nearest_frame_bucket = min(
resolution_buckets,
key=lambda bucket: video_num_frames - bucket[0],
default=1,
)[0]
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
frames = video_reader.get_batch(frame_indices)
frames = frames[:nearest_frame_bucket].float()
frames = frames.permute(0, 3, 1, 2).contiguous()
nearest_res = min(resolution_buckets, key=lambda x: abs(x[1] - frames.shape[2]) + abs(x[2] - frames.shape[3]))
nearest_res = (nearest_res[1], nearest_res[2])
frames = torch.stack([resize(f, nearest_res) for f in frames], dim=0)
return frames