update multi gpus finetune script

This commit is contained in:
zR 2024-08-09 13:46:06 +08:00
parent 6fc9de04dc
commit 8c0d0eb427
7 changed files with 29 additions and 7 deletions

View File

@ -60,6 +60,8 @@ the quality of the generated video.
### SAT ### SAT
**Please make sure your Python version is between 3.10 and 3.12, inclusive of both 3.10 and 3.12.**
Follow instructions in [sat_demo](sat/README.md): Contains the inference code and fine-tuning code of SAT weights. It is Follow instructions in [sat_demo](sat/README.md): Contains the inference code and fine-tuning code of SAT weights. It is
recommended to improve based on the CogVideoX model structure. Innovative researchers use this code to better perform recommended to improve based on the CogVideoX model structure. Innovative researchers use this code to better perform
rapid stacking and development. rapid stacking and development.
@ -67,6 +69,8 @@ rapid stacking and development.
### Diffusers ### Diffusers
**Please make sure your Python version is between 3.10 and 3.12, inclusive of both 3.10 and 3.12.**
``` ```
pip install -r requirements.txt pip install -r requirements.txt
``` ```

View File

@ -93,7 +93,7 @@ pip install -r requirements.txt
CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideox) 同源的开源版本视频生成模型。 CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideox) 同源的开源版本视频生成模型。
下表展示目前我们提供的视频生成模型列表,以及相关基础信息: 下表展示目前我们提供的视频生成模型列表,以及相关基础信息:
| 模型名 | CogVideoX-2B | | 模型名 | CogVideoX-2B |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------| |---------------------|-------------------------------------------------------------------------------------------------------------------------------|

View File

@ -117,8 +117,12 @@ bash inference.sh
### Preparing the Environment ### Preparing the Environment
Please note that currently, SAT needs to be installed from the source code for proper fine-tuning. We will address this Please note that currently, SAT needs to be installed from the source code for proper fine-tuning.
issue in future stable releases.
You need to get the code from the source to support the fine-tuning functionality, as these features have not yet been
released in the Pip package.
We will address this issue in future stable releases.
``` ```
git clone https://github.com/THUDM/SwissArmyTransformer.git git clone https://github.com/THUDM/SwissArmyTransformer.git
@ -197,7 +201,8 @@ model:
1. Run the inference code to start fine-tuning. 1. Run the inference code to start fine-tuning.
```shell ```shell
bash finetune.sh bash finetune_single_gpu.sh # Single GPU
bash finetune_multi_gpus.sh # Multi GPUs
``` ```
### Converting to Huggingface Diffusers Supported Weights ### Converting to Huggingface Diffusers Supported Weights

View File

@ -112,7 +112,9 @@ bash inference.sh
### 准备环境 ### 准备环境
请注意目前SAT需要从源码安装才能正常微调, 我们将会在未来的稳定版本解决这个问题。 请注意目前SAT需要从源码安装才能正常微调。
这是因为你需要使用还没发型到pip包版本的最新代码所支持的功能。
我们将会在未来的稳定版本解决这个问题。
``` ```
git clone https://github.com/THUDM/SwissArmyTransformer.git git clone https://github.com/THUDM/SwissArmyTransformer.git
@ -189,7 +191,8 @@ model:
1. 运行推理代码,即可开始微调。 1. 运行推理代码,即可开始微调。
```shell ```shell
bash finetune.sh bash finetune_single_gpu.sh # Single GPU
bash finetune_multi_gpus.sh # Multi GPUs
``` ```
### 转换到 Huggingface Diffusers 库支持的权重 ### 转换到 Huggingface Diffusers 库支持的权重

View File

@ -425,7 +425,7 @@ class SFTDataset(Dataset):
self.videos_list.append(tensor_frms) self.videos_list.append(tensor_frms)
# caption # caption
caption_path = os.path.join(root, filename.replace("videos", "labels").replace(".mp4", ".txt")) caption_path = os.path.join(root, filename.replace(".mp4", ".txt")).replace("videos", "labels")
if os.path.exists(caption_path): if os.path.exists(caption_path):
caption = open(caption_path, "r").read().splitlines()[0] caption = open(caption_path, "r").read().splitlines()[0]
else: else:

View File

@ -0,0 +1,10 @@
#! /bin/bash
echo "RUN on `hostname`, CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
run_cmd="torchrun --standalone --nproc_per_node=4 train_video.py --base configs/cogvideox_2b_sft.yaml --seed $RANDOM
echo ${run_cmd}
eval ${run_cmd}
echo "DONE on `hostname`"