diff --git a/README.md b/README.md
index 4b7f3af..b397e58 100644
--- a/README.md
+++ b/README.md
@@ -24,16 +24,38 @@
the video almost losslessly.
- 🔥 **News**: ``2024/8/6``: We have open-sourced **CogVideoX-2B**,the first model in the CogVideoX series of video
generation models.
-- 🌱 **Source**: ```2022/5/19```: We have open-sourced **CogVideo** (now you can see in `CogVideo` branch),the **first** open-sourced pretrained text-to-video model, and you can check [ICLR'23 CogVideo Paper](https://arxiv.org/abs/2205.15868) for technical details.
+- 🌱 **Source**: ```2022/5/19```: We have open-sourced **CogVideo** (now you can see in `CogVideo` branch),the **first**
+ open-sourced pretrained text-to-video model, and you can
+ check [ICLR'23 CogVideo Paper](https://arxiv.org/abs/2205.15868) for technical details.
**More powerful models with larger parameter sizes are on the way~ Stay tuned!**
+## Table of Contents
+
+Jump to a specific section:
+
+- [Quick Start](#Quick-Start)
+ - [SAT](#sat)
+ - [Diffusers](#Diffusers)
+- [CogVideoX-2B Video Works](#cogvideox-2b-gallery)
+- [Introduction to the CogVideoX Model](#Model-Introduction)
+- [Full Project Structure](#project-structure)
+ - [Inference](#inference)
+ - [SAT](#sat)
+ - [Tools](#tools)
+- [Introduction to CogVideo(ICLR'23) Model](#cogvideoiclr23)
+- [Citations](#Citation)
+- [Open Source Project Plan](#Open-Source-Project-Plan)
+- [Model License](#Model-License)
+
## Quick Start
### SAT
-Follow instructions in [sat_demo](sat/README.md): Contains the inference code and fine-tuning code of SAT weights. It is recommended to improve based on the CogVideoX model structure. Innovative researchers use this code to better perform rapid stacking and development.
- (18 GB for inference, 40GB for lora finetune)
+Follow instructions in [sat_demo](sat/README.md): Contains the inference code and fine-tuning code of SAT weights. It is
+recommended to improve based on the CogVideoX model structure. Innovative researchers use this code to better perform
+rapid stacking and development.
+(18 GB for inference, 40GB for lora finetune)
### Diffusers
@@ -41,8 +63,9 @@ Follow instructions in [sat_demo](sat/README.md): Contains the inference code an
pip install -r requirements.txt
```
-Then follow [diffusers_demo](inference/cli_demo.py): A more detailed explanation of the inference code, mentioning the significance of common parameters.
- (36GB for inference, smaller memory and fine-tuned code are under development)
+Then follow [diffusers_demo](inference/cli_demo.py): A more detailed explanation of the inference code, mentioning the
+significance of common parameters.
+(36GB for inference, smaller memory and fine-tuned code are under development)
## CogVideoX-2B Gallery
@@ -95,16 +118,23 @@ of the **CogVideoX** open-source model.
### Inference
-+ [diffusers_demo](inference/cli_demo.py): A more detailed explanation of the inference code, mentioning the significance of common parameters.
-+ [diffusers_vae_demo](inference/cli_vae_demo.py): Executing the VAE inference code alone currently requires 71GB of memory, but it will be optimized in the future.
-+ [convert_demo](inference/convert_demo.py): How to convert user input into a format suitable for CogVideoX. Because CogVideoX is trained on long caption, we need to convert the input text to be consistent with the training distribution using a LLM. By default, the script uses GLM4, but it can also be replaced with any other LLM such as GPT, Gemini, etc.
-+ [gradio_demo](gradio_demo.py): A simple gradio web UI demonstrating how to use the CogVideoX-2B model to generate videos.
++ [diffusers_demo](inference/cli_demo.py): A more detailed explanation of the inference code, mentioning the
+ significance of common parameters.
++ [diffusers_vae_demo](inference/cli_vae_demo.py): Executing the VAE inference code alone currently requires 71GB of
+ memory, but it will be optimized in the future.
++ [convert_demo](inference/convert_demo.py): How to convert user input into a format suitable for CogVideoX. Because
+ CogVideoX is trained on long caption, we need to convert the input text to be consistent with the training
+ distribution using a LLM. By default, the script uses GLM4, but it can also be replaced with any other LLM such as
+ GPT, Gemini, etc.
++ [gradio_demo](gradio_demo.py): A simple gradio web UI demonstrating how to use the CogVideoX-2B model to generate
+ videos.
-+ [web_demo](inference/web_demo.py): A simple streamlit web application demonstrating how to use the CogVideoX-2B model to generate videos.
++ [web_demo](inference/web_demo.py): A simple streamlit web application demonstrating how to use the CogVideoX-2B model
+ to generate videos.

@@ -112,40 +142,25 @@ of the **CogVideoX** open-source model.
### sat
-+ [sat_demo](sat/README.md): Contains the inference code and fine-tuning code of SAT weights. It is recommended to improve based on the CogVideoX model structure. Innovative researchers use this code to better perform rapid stacking and development.
++ [sat_demo](sat/README.md): Contains the inference code and fine-tuning code of SAT weights. It is recommended to
+ improve based on the CogVideoX model structure. Innovative researchers use this code to better perform rapid stacking
+ and development.
### Tools
This folder contains some tools for model conversion / caption generation, etc.
-+ [convert_weight_sat2hf](tools/convert_weight_sat2hf.py): Convert SAT model weights to Huggingface model weights.
++ [convert_weight_sat2hf](tools/convert_weight_sat2hf.py): Convert SAT model weights to Huggingface model weights.
+ [caption_demo](tools/caption): Caption tool, a model that understands videos and outputs them in text.
-## Project Plan
-
-- [x] Open source CogVideoX model
- - [x] Open source 3D Causal VAE used in CogVideoX.
- - [x] CogVideoX model inference example (CLI / Web Demo)
- - [x] CogVideoX online experience demo (Huggingface Space)
- - [x] CogVideoX open source model API interface example (Huggingface)
- - [x] CogVideoX model fine-tuning example (SAT)
- - [ ] CogVideoX model fine-tuning example (Huggingface / SAT)
- - [ ] Open source CogVideoX-Pro (adapted for CogVideoX-2B suite)
- - [x] Release CogVideoX technical report
-
-We welcome your contributions. You can click [here](resources/contribute.md) for more information.
-
-## Model License
-
-The code in this repository is released under the [Apache 2.0 License](LICENSE).
-
-The model weights and implementation code are released under the [CogVideoX LICENSE](MODEL_LICENSE).
-
## CogVideo(ICLR'23)
-The official repo for the paper: [CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers](https://arxiv.org/abs/2205.15868) is on the [CogVideo branch](https://github.com/THUDM/CogVideo/tree/CogVideo)
+
+The official repo for the
+paper: [CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers](https://arxiv.org/abs/2205.15868)
+is on the [CogVideo branch](https://github.com/THUDM/CogVideo/tree/CogVideo)
**CogVideo is able to generate relatively high-frame-rate videos.**
-A 4-second clip of 32 frames is shown below.
+A 4-second clip of 32 frames is shown below.

@@ -155,8 +170,8 @@ A 4-second clip of 32 frames is shown below.
-The demo for CogVideo is at [https://models.aminer.cn/cogvideo](https://models.aminer.cn/cogvideo/), where you can get hands-on practice on text-to-video generation. *The original input is in Chinese.*
-
+The demo for CogVideo is at [https://models.aminer.cn/cogvideo](https://models.aminer.cn/cogvideo/), where you can get
+hands-on practice on text-to-video generation. *The original input is in Chinese.*
## Citation
@@ -175,3 +190,23 @@ The demo for CogVideo is at [https://models.aminer.cn/cogvideo](https://models.a
year={2022}
}
```
+
+## Open Source Project Plan
+
+- [x] Open source CogVideoX model
+ - [x] Open source 3D Causal VAE used in CogVideoX.
+ - [x] CogVideoX model inference example (CLI / Web Demo)
+ - [x] CogVideoX online experience demo (Huggingface Space)
+ - [x] CogVideoX open source model API interface example (Huggingface)
+ - [x] CogVideoX model fine-tuning example (SAT)
+ - [ ] CogVideoX model fine-tuning example (Huggingface / SAT)
+ - [ ] Open source CogVideoX-Pro (adapted for CogVideoX-2B suite)
+ - [x] Release CogVideoX technical report
+
+We welcome your contributions. You can click [here](resources/contribute.md) for more information.
+
+## Model License
+
+The code in this repository is released under the [Apache 2.0 License](LICENSE).
+
+The model weights and implementation code are released under the [CogVideoX LICENSE](MODEL_LICENSE).
diff --git a/README_zh.md b/README_zh.md
index 70419c9..a0b3c0b 100644
--- a/README_zh.md
+++ b/README_zh.md
@@ -26,6 +26,23 @@
- 🌱 **Source**: ```2022/5/19```: 我们开源了 CogVideo 视频生成模型(现在你可以在 `CogVideo` 分支中看到),这是首个开源的基于 Transformer 的大型文本生成视频模型,您可以访问 [ICLR'23 论文](https://arxiv.org/abs/2205.15868) 查看技术细节。
**性能更强,参数量更大的模型正在到来的路上~,欢迎关注**
+## 目录
+
+跳转到指定部分:
+
+- [快速开始](#快速开始)
+ - [SAT](#sat)
+ - [Diffusers](#Diffusers)
+- [CogVideoX-2B 视频作品](#cogvideox-2b-视频作品)
+- [CogVideoX模型介绍](#模型介绍)
+- [完整项目代码结构](#完整项目代码结构)
+ - [Inference](#inference)
+ - [SAT](#sat)
+ - [Tools](#tools)
+- [开源项目规划](#开源项目规划)
+- [模型协议](#模型协议)
+- [CogVideo(ICLR'23)模型介绍](#cogvideoiclr23)
+- [引用](#引用)
## 快速开始
@@ -84,7 +101,7 @@ CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideox) 同源的开源
| 下载地址 (Diffusers 模型) | 🤗 [Huggingface](https://huggingface.co/THUDM/CogVideoX-2B) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b) |
| 下载地址 (SAT 模型) | [SAT](./sat/README_zh.md) |
-## 项目结构
+## 完整项目代码结构
本开源仓库将带领开发者快速上手 **CogVideoX** 开源模型的基础调用方式、微调示例。
@@ -117,24 +134,6 @@ CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideox) 同源的开源
+ [convert_weight_sat2hf](tools/convert_weight_sat2hf.py): 将 SAT 模型权重转换为 Huggingface 模型权重。
+ [caption_demo](tools/caption/README_zh.md): Caption 工具,对视频理解并用文字输出的模型。
-## 项目规划
-
-- [x] CogVideoX 模型开源
- - [x] CogVideoX 模型推理示例 (CLI / Web Demo)
- - [x] CogVideoX 在线体验示例 (Huggingface Space)
- - [x] CogVideoX 开源模型API接口示例 (Huggingface)
- - [x] CogVideoX 模型微调示例 (SAT)
- - [ ] CogVideoX 模型微调示例 (Huggingface / SAT)
- - [ ] CogVideoX-Pro 开源(适配 CogVideoX-2B 套件)
- - [ ] CogVideoX 技术报告公开
-
-我们欢迎您的贡献,您可以点击[这里](resources/contribute_zh.md)查看更多信息。
-
-## 模型协议
-
-本仓库代码使用 [Apache 2.0 协议](LICENSE) 发布。
-
-本模型权重和模型实现代码根据 [CogVideoX LICENSE](MODEL_LICENSE) 许可证发布。
## CogVideo(ICLR'23)
[CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers](https://arxiv.org/abs/2205.15868) 的官方repo位于[CogVideo branch](https://github.com/THUDM/CogVideo/tree/CogVideo)。
@@ -168,4 +167,23 @@ CogVideo的demo网站在[https://models.aminer.cn/cogvideo](https://models.amine
journal={arXiv preprint arXiv:2205.15868},
year={2022}
}
-```
\ No newline at end of file
+```
+
+## 开源项目规划
+
+- [x] CogVideoX 模型开源
+ - [x] CogVideoX 模型推理示例 (CLI / Web Demo)
+ - [x] CogVideoX 在线体验示例 (Huggingface Space)
+ - [x] CogVideoX 开源模型API接口示例 (Huggingface)
+ - [x] CogVideoX 模型微调示例 (SAT)
+ - [ ] CogVideoX 模型微调示例 (Huggingface / SAT)
+ - [ ] CogVideoX-Pro 开源(适配 CogVideoX-2B 套件)
+ - [X] CogVideoX 技术报告公开
+
+我们欢迎您的贡献,您可以点击[这里](resources/contribute_zh.md)查看更多信息。
+
+## 模型协议
+
+本仓库代码使用 [Apache 2.0 协议](LICENSE) 发布。
+
+本模型权重和模型实现代码根据 [CogVideoX LICENSE](MODEL_LICENSE) 许可证发布。