mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-06-18 14:39:17 +08:00
Merge pull request #411 from glide-the/diffuser_params
Add new command line arguments for LoRA weights and prompt
This commit is contained in:
commit
6a16207321
@ -57,6 +57,23 @@ def get_args():
|
||||
The formula for lora_scale is: lora_r / alpha.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lora_alpha",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""LoRA weights have a rank parameter, with the default for 2B trans set at 128 and 5B trans set at 256.
|
||||
This part is used to calculate the value for lora_scale, which is by default divided by the alpha value,
|
||||
used for stable learning and to prevent underflow. In the SAT training framework,
|
||||
alpha is set to 1 by default. The higher the rank, the better the expressive capability,
|
||||
but it requires more memory and training time. Increasing this number blindly isn't always better.
|
||||
The formula for lora_scale is: lora_r / alpha.
|
||||
""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
type=str,
|
||||
help="prompt",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
@ -69,17 +86,18 @@ def get_args():
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
pipe = CogVideoXPipeline.from_pretrained(args.pretrained_model_name_or_path, torch_dtype=torch.bfloat16).to(device)
|
||||
pipe.load_lora_weights(args.lora_weights_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
|
||||
pipe.fuse_lora(lora_scale=1/128)
|
||||
pipe.load_lora_weights(args.lora_weights_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="cogvideox-lora")
|
||||
# pipe.fuse_lora(lora_scale=args.lora_alpha/args.lora_r, ['transformer'])
|
||||
lora_scaling=args.lora_alpha/args.lora_r
|
||||
pipe.set_adapters(["cogvideox-lora"], [lora_scaling])
|
||||
|
||||
|
||||
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
||||
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
prompt="""In the heart of a bustling city, a young woman with long, flowing brown hair and a radiant smile stands out. She's donned in a cozy white beanie adorned with playful animal ears, adding a touch of whimsy to her appearance. Her eyes sparkle with joy as she looks directly into the camera, her expression inviting and warm. The background is a blur of activity, with indistinct figures moving about, suggesting a lively public space. The lighting is soft and diffused, casting a gentle glow on her face and highlighting her features. The overall mood is cheerful and vibrant, capturing a moment of happiness in the midst of urban life.
|
||||
"""
|
||||
|
||||
latents = pipe(
|
||||
prompt=prompt,
|
||||
prompt=args.prompt,
|
||||
num_videos_per_prompt=1,
|
||||
num_inference_steps=50,
|
||||
num_frames=49,
|
||||
|
Loading…
x
Reference in New Issue
Block a user