mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-06-16 21:29:17 +08:00
Updated README, README_zh, and gradio_demo
This commit is contained in:
parent
8e8275d2e8
commit
51b7f53e7a
@ -82,6 +82,12 @@ of the **CogVideoX** open-source model.
|
|||||||
+ [cli_demo](inference/cli_demo.py): A more detailed explanation of the inference code, mentioning the significance of common parameters.
|
+ [cli_demo](inference/cli_demo.py): A more detailed explanation of the inference code, mentioning the significance of common parameters.
|
||||||
+ [cli_vae_demo](inference/cli_vae_demo.py): Executing the VAE inference code alone currently requires 71GB of memory, but it will be optimized in the future.
|
+ [cli_vae_demo](inference/cli_vae_demo.py): Executing the VAE inference code alone currently requires 71GB of memory, but it will be optimized in the future.
|
||||||
+ [convert_demo](inference/convert_demo.py): How to convert user input into a format suitable for CogVideoX. Because CogVideoX is trained on long caption, we need to convert the input text to be consistent with the training distribution using a LLM. By default, the script uses GLM4, but it can also be replaced with any other LLM such as GPT, Gemini, etc.
|
+ [convert_demo](inference/convert_demo.py): How to convert user input into a format suitable for CogVideoX. Because CogVideoX is trained on long caption, we need to convert the input text to be consistent with the training distribution using a LLM. By default, the script uses GLM4, but it can also be replaced with any other LLM such as GPT, Gemini, etc.
|
||||||
|
+ [gradio_demo](gradio_demo.py): A simple gradio web UI demonstrating how to use the CogVideoX-2B model to generate videos.
|
||||||
|
|
||||||
|
<div style="text-align: center;">
|
||||||
|
<img src="resources/gradio_demo.png" style="width: 100%; height: auto;" />
|
||||||
|
</div>
|
||||||
|
|
||||||
+ [web_demo](inference/web_demo.py): A simple streamlit web application demonstrating how to use the CogVideoX-2B model to generate videos.
|
+ [web_demo](inference/web_demo.py): A simple streamlit web application demonstrating how to use the CogVideoX-2B model to generate videos.
|
||||||
|
|
||||||
<div style="text-align: center;">
|
<div style="text-align: center;">
|
||||||
|
@ -77,6 +77,12 @@ CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideox) 同源的开源
|
|||||||
+ [cli_demo](inference/cli_demo.py): 更详细的推理代码讲解,常见参数的意义,在这里都会提及。
|
+ [cli_demo](inference/cli_demo.py): 更详细的推理代码讲解,常见参数的意义,在这里都会提及。
|
||||||
+ [cli_vae_demo](inference/cli_vae_demo.py): 单独执行VAE的推理代码,目前需要71GB显存,将来会优化。
|
+ [cli_vae_demo](inference/cli_vae_demo.py): 单独执行VAE的推理代码,目前需要71GB显存,将来会优化。
|
||||||
+ [convert_demo](inference/convert_demo.py): 如何将用户的输入转换成适合 CogVideoX的长输入。因为CogVideoX是在长文本上训练的,所以我们需要把输入文本的分布通过LLM转换为和训练一致的长文本。脚本中默认使用GLM4,也可以替换为GPT、Gemini等任意大语言模型。
|
+ [convert_demo](inference/convert_demo.py): 如何将用户的输入转换成适合 CogVideoX的长输入。因为CogVideoX是在长文本上训练的,所以我们需要把输入文本的分布通过LLM转换为和训练一致的长文本。脚本中默认使用GLM4,也可以替换为GPT、Gemini等任意大语言模型。
|
||||||
|
+ [gradio_demo](gradio_demo.py): 一个简单的gradio网页应用,展示如何使用 CogVideoX-2B 模型生成视频。
|
||||||
|
|
||||||
|
<div style="text-align: center;">
|
||||||
|
<img src="resources/gradio_demo.png" style="width: 100%; height: auto;" />
|
||||||
|
</div>
|
||||||
|
|
||||||
+ [web_demo](inference/web_demo.py): 一个简单的streamlit网页应用,展示如何使用 CogVideoX-2B 模型生成视频。
|
+ [web_demo](inference/web_demo.py): 一个简单的streamlit网页应用,展示如何使用 CogVideoX-2B 模型生成视频。
|
||||||
|
|
||||||
<div style="text-align: center;">
|
<div style="text-align: center;">
|
||||||
|
@ -9,7 +9,6 @@ import torch
|
|||||||
from diffusers import CogVideoXPipeline
|
from diffusers import CogVideoXPipeline
|
||||||
from datetime import datetime, timedelta
|
from datetime import datetime, timedelta
|
||||||
from openai import OpenAI
|
from openai import OpenAI
|
||||||
import spaces
|
|
||||||
import imageio
|
import imageio
|
||||||
import moviepy.editor as mp
|
import moviepy.editor as mp
|
||||||
from typing import List, Union
|
from typing import List, Union
|
||||||
@ -88,7 +87,6 @@ def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
|||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
|
|
||||||
@spaces.GPU(duration=240)
|
|
||||||
def infer(
|
def infer(
|
||||||
prompt: str,
|
prompt: str,
|
||||||
num_inference_steps: int,
|
num_inference_steps: int,
|
||||||
|
BIN
resources/gradio_demo.png
Normal file
BIN
resources/gradio_demo.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 597 KiB |
Loading…
x
Reference in New Issue
Block a user