diff --git a/cog.yaml b/cog.yaml index 0e8039f..c2af953 100644 --- a/cog.yaml +++ b/cog.yaml @@ -23,7 +23,7 @@ build: run: - "mkdir -p /sharefs/cogview-new; cd /sharefs/cogview-new; wget https://models.nmb.ai/cogvideo/cogvideo-stage1.tar.gz -O - | tar xz" - "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogvideo/cogvideo-stage2.tar.gz -O - | tar xz" - - "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogview2/cogview2-dsr.tar.gz -O - | tar xz" + #- "cd /sharefs/cogview-new; wget https://models.nmb.ai/cogview2/cogview2-dsr.tar.gz -O - | tar xz" - "mkdir -p /root/.icetk_models; wget -O /root/.icetk_models/ice_text.model https://models.nmb.ai/cogvideo/ice_text.model" - "mkdir -p /root/.tcetk_models; wget -O /root/.icetk_models/ice_image.pt https://models.nmb.ai/cogvideo/ice_image.pt" diff --git a/predict.py b/predict.py index 419e0c2..3901597 100644 --- a/predict.py +++ b/predict.py @@ -4,14 +4,477 @@ import subprocess import tempfile import glob import typing +from typing_extensions import Self from deep_translator import GoogleTranslator from cog import BasePredictor, Input, Path +import torch +import time +import logging,sys +import stat +from torchvision.utils import save_image +from icetk import icetk as tokenizer +import torch.distributed as dist +tokenizer.add_special_tokens(['', '', '']) + +from SwissArmyTransformer import get_args +from SwissArmyTransformer.data_utils import BinaryDataset, make_loaders +from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy +from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually +from SwissArmyTransformer.resources import auto_create + +from models.cogvideo_cache_model import CogVideoCacheModel +from coglm_strategy import CoglmStrategy + + +def get_masks_and_position_ids_stage1(data, textlen, framelen): + # Extract batch size and sequence length. + tokens = data + seq_length = len(data[0]) + # Attention mask (lower triangular). + attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device) + attention_mask[:, :textlen, textlen:] = 0 + attention_mask[:, textlen:, textlen:].tril_() + attention_mask.unsqueeze_(1) + # Unaligned version + position_ids = torch.zeros(seq_length, dtype=torch.long, + device=data.device) + torch.arange(textlen, out=position_ids[:textlen], + dtype=torch.long, device=data.device) + torch.arange(512, 512+seq_length-textlen, out=position_ids[textlen:], + dtype=torch.long, device=data.device) + position_ids = position_ids.unsqueeze(0) + + return tokens, attention_mask, position_ids + +def get_masks_and_position_ids_stage2(data, textlen, framelen): + # Extract batch size and sequence length. + tokens = data + seq_length = len(data[0]) + + # Attention mask (lower triangular). + attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device) + attention_mask[:, :textlen, textlen:] = 0 + attention_mask[:, textlen:, textlen:].tril_() + attention_mask.unsqueeze_(1) + + # Unaligned version + position_ids = torch.zeros(seq_length, dtype=torch.long, + device=data.device) + torch.arange(textlen, out=position_ids[:textlen], + dtype=torch.long, device=data.device) + frame_num = (seq_length-textlen)//framelen + assert frame_num == 5 + torch.arange(512, 512+framelen, out=position_ids[textlen:textlen+framelen], + dtype=torch.long, device=data.device) + torch.arange(512+framelen*2, 512+framelen*3, out=position_ids[textlen+framelen:textlen+framelen*2], + dtype=torch.long, device=data.device) + torch.arange(512+framelen*(frame_num-1), 512+framelen*frame_num, out=position_ids[textlen+framelen*2:textlen+framelen*3], + dtype=torch.long, device=data.device) + torch.arange(512+framelen*1, 512+framelen*2, out=position_ids[textlen+framelen*3:textlen+framelen*4], + dtype=torch.long, device=data.device) + torch.arange(512+framelen*3, 512+framelen*4, out=position_ids[textlen+framelen*4:textlen+framelen*5], + dtype=torch.long, device=data.device) + + position_ids = position_ids.unsqueeze(0) + + return tokens, attention_mask, position_ids + +def my_update_mems(hiddens, mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len): + if hiddens is None: + return None, mems_indexs + mem_num = len(hiddens) + ret_mem = [] + with torch.no_grad(): + for id in range(mem_num): + if hiddens[id][0] is None: + ret_mem.append(None) + else: + if id == 0 and limited_spatial_channel_mem and mems_indexs[id]+hiddens[0][0].shape[1] >= text_len+frame_len: + if mems_indexs[id] == 0: + for layer, hidden in enumerate(hiddens[id]): + mems_buffers[id][layer, :, :text_len] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, :text_len] + new_mem_len_part2 = (mems_indexs[id]+hiddens[0][0].shape[1]-text_len)%frame_len + if new_mem_len_part2 > 0: + for layer, hidden in enumerate(hiddens[id]): + mems_buffers[id][layer, :, text_len:text_len+new_mem_len_part2] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, -new_mem_len_part2:] + mems_indexs[id] = text_len+new_mem_len_part2 + else: + for layer, hidden in enumerate(hiddens[id]): + mems_buffers[id][layer, :, mems_indexs[id]:mems_indexs[id]+hidden.shape[1]] = hidden.expand(mems_buffers[id].shape[1], -1, -1) + mems_indexs[id] += hidden.shape[1] + ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]]) + return ret_mem, mems_indexs + + +def my_save_multiple_images(imgs, path, subdir, debug=True): + # imgs: list of tensor images + if debug: + imgs = torch.cat(imgs, dim=0) + print("\nSave to: ", path, flush=True) + save_image(imgs, path, normalize=True) + else: + print("\nSave to: ", path, flush=True) + single_frame_path = os.path.join(path, subdir) + os.makedirs(single_frame_path, exist_ok=True) + for i in range(len(imgs)): + save_image(imgs[i], os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'), normalize=True) + os.chmod(os.path.join(single_frame_path,f'{str(i).rjust(4,"0")}.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU) + save_image(torch.cat(imgs, dim=0), os.path.join(single_frame_path,f'frame_concat.jpg'), normalize=True) + os.chmod(os.path.join(single_frame_path,f'frame_concat.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU) + +def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len): + # The fisrt token's position id of the frame that the next token belongs to; + if total_len < text_len: + return None + return (total_len-text_len)//frame_len * frame_len + text_len + +def my_filling_sequence( + model, + args, + seq, + batch_size, + get_masks_and_position_ids, + text_len, + frame_len, + strategy=BaseStrategy(), + strategy2=BaseStrategy(), + mems=None, + log_text_attention_weights=0, # default to 0: no artificial change + mode_stage1=True, + enforce_no_swin=False, + guider_seq=None, + guider_text_len=0, + guidance_alpha=1, + limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内 + **kw_args + ): + ''' + seq: [2, 3, 5, ..., -1(to be generated), -1, ...] + mems: [num_layers, batch_size, len_mems(index), mem_hidden_size] + cache, should be first mems.shape[1] parts of context_tokens. + mems are the first-level citizens here, but we don't assume what is memorized. + input mems are used when multi-phase generation. + ''' + if guider_seq is not None: + logging.debug("Using Guidance In Inference") + if limited_spatial_channel_mem: + logging.debug("Limit spatial-channel's mem to current frame") + assert len(seq.shape) == 2 + + # building the initial tokens, attention_mask, and position_ids + actual_context_length = 0 + + while seq[-1][actual_context_length] >= 0: # the last seq has least given tokens + actual_context_length += 1 # [0, context_length-1] are given + assert actual_context_length > 0 + current_frame_num = (actual_context_length-text_len) // frame_len + assert current_frame_num >= 0 + context_length = text_len + current_frame_num * frame_len + + tokens, attention_mask, position_ids = get_masks_and_position_ids(seq, text_len, frame_len) + tokens = tokens[..., :context_length] + input_tokens = tokens.clone() + + if guider_seq is not None: + guider_index_delta = text_len - guider_text_len + guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids(guider_seq, guider_text_len, frame_len) + guider_tokens = guider_tokens[..., :context_length-guider_index_delta] + guider_input_tokens = guider_tokens.clone() + + for fid in range(current_frame_num): + input_tokens[:, text_len+400*fid] = tokenizer[''] + if guider_seq is not None: + guider_input_tokens[:, guider_text_len+400*fid] = tokenizer[''] + + attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16 + # initialize generation + counter = context_length - 1 # Last fixed index is ``counter'' + index = 0 # Next forward starting index, also the length of cache. + mems_buffers_on_GPU = False + mems_indexs = [0, 0] + mems_len = [(400+74) if limited_spatial_channel_mem else 5*400+74, 5*400+74] + mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype) + for mem_len in mems_len] + + + if guider_seq is not None: + guider_attention_mask = guider_attention_mask.type_as(next(model.parameters())) # if fp16 + guider_mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype) + for mem_len in mems_len] + guider_mems_indexs = [0, 0] + guider_mems = None + + torch.cuda.empty_cache() + # step-by-step generation + while counter < len(seq[0]) - 1: + # we have generated counter+1 tokens + # Now, we want to generate seq[counter + 1], + # token[:, index: counter+1] needs forwarding. + if index == 0: + group_size = 2 if (input_tokens.shape[0] == batch_size and not mode_stage1) else batch_size + + logits_all = None + for batch_idx in range(0, input_tokens.shape[0], group_size): + logits, *output_per_layers = model( + input_tokens[batch_idx:batch_idx+group_size, index:], + position_ids[..., index: counter+1], + attention_mask, # TODO memlen + mems=mems, + text_len=text_len, + frame_len=frame_len, + counter=counter, + log_text_attention_weights=log_text_attention_weights, + enforce_no_swin=enforce_no_swin, + **kw_args + ) + logits_all = torch.cat((logits_all, logits), dim=0) if logits_all is not None else logits + mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]] + next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(text_len, frame_len, mem_kv01[0][0].shape[1]) + for id, mem_kv in enumerate(mem_kv01): + for layer, mem_kv_perlayer in enumerate(mem_kv): + if limited_spatial_channel_mem and id == 0: + mems_buffers[id][layer, batch_idx:batch_idx+group_size, :text_len] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :text_len] + mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\ + mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:] + else: + mems_buffers[id][layer, batch_idx:batch_idx+group_size, :mem_kv_perlayer.shape[1]] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1) + mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[1], mem_kv01[1][0].shape[1] + if limited_spatial_channel_mem: + mems_indexs[0] -= (next_tokens_frame_begin_id - text_len) + + mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)] + logits = logits_all + + # Guider + if guider_seq is not None: + guider_logits_all = None + for batch_idx in range(0, guider_input_tokens.shape[0], group_size): + guider_logits, *guider_output_per_layers = model( + guider_input_tokens[batch_idx:batch_idx+group_size, max(index-guider_index_delta, 0):], + guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta], + guider_attention_mask, + mems=guider_mems, + text_len=guider_text_len, + frame_len=frame_len, + counter=counter-guider_index_delta, + log_text_attention_weights=log_text_attention_weights, + enforce_no_swin=enforce_no_swin, + **kw_args + ) + guider_logits_all = torch.cat((guider_logits_all, guider_logits), dim=0) if guider_logits_all is not None else guider_logits + guider_mem_kv01 = [[o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]] + for id, guider_mem_kv in enumerate(guider_mem_kv01): + for layer, guider_mem_kv_perlayer in enumerate(guider_mem_kv): + if limited_spatial_channel_mem and id == 0: + guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_text_len] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :guider_text_len] + guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(guider_text_len, frame_len, guider_mem_kv_perlayer.shape[1]) + guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\ + guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:] + else: + guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_mem_kv_perlayer.shape[1]] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1) + guider_mems_indexs[0], guider_mems_indexs[1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[1][0].shape[1] + if limited_spatial_channel_mem: + guider_mems_indexs[0] -= (guider_next_tokens_frame_begin_id-guider_text_len) + guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)] + guider_logits = guider_logits_all + else: + if not mems_buffers_on_GPU: + if not mode_stage1: + torch.cuda.empty_cache() + for idx, mem in enumerate(mems): + mems[idx] = mem.to(next(model.parameters()).device) + if guider_seq is not None: + for idx, mem in enumerate(guider_mems): + guider_mems[idx] = mem.to(next(model.parameters()).device) + else: + torch.cuda.empty_cache() + for idx, mem_buffer in enumerate(mems_buffers): + mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device) + mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)] + if guider_seq is not None: + for idx, guider_mem_buffer in enumerate(guider_mems_buffers): + guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device) + guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)] + mems_buffers_on_GPU = True + + logits, *output_per_layers = model( + input_tokens[:, index:], + position_ids[..., index: counter+1], + attention_mask, # TODO memlen + mems=mems, + text_len=text_len, + frame_len=frame_len, + counter=counter, + log_text_attention_weights=log_text_attention_weights, + enforce_no_swin=enforce_no_swin, + limited_spatial_channel_mem=limited_spatial_channel_mem, + **kw_args + ) + mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers] + + if guider_seq is not None: + guider_logits, *guider_output_per_layers = model( + guider_input_tokens[:, max(index-guider_index_delta, 0):], + guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta], + guider_attention_mask, + mems=guider_mems, + text_len=guider_text_len, + frame_len=frame_len, + counter=counter-guider_index_delta, + log_text_attention_weights=0, + enforce_no_swin=enforce_no_swin, + limited_spatial_channel_mem=limited_spatial_channel_mem, + **kw_args + ) + guider_mem_kv0, guider_mem_kv1 = [o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers] + + if not mems_buffers_on_GPU: + torch.cuda.empty_cache() + for idx, mem_buffer in enumerate(mems_buffers): + mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device) + if guider_seq is not None: + for idx, guider_mem_buffer in enumerate(guider_mems_buffers): + guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device) + mems_buffers_on_GPU = True + + mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len) + if guider_seq is not None: + guider_mems, guider_mems_indexs = my_update_mems([guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, guider_mems_indexs, limited_spatial_channel_mem, guider_text_len, frame_len) + + + counter += 1 + index = counter + + logits = logits[:, -1].expand(batch_size, -1) # [batch size, vocab size] + tokens = tokens.expand(batch_size, -1) + if guider_seq is not None: + guider_logits = guider_logits[:, -1].expand(batch_size, -1) + guider_tokens = guider_tokens.expand(batch_size, -1) + + if seq[-1][counter].item() < 0: + # sampling + guided_logits = guider_logits+(logits-guider_logits)*guidance_alpha if guider_seq is not None else logits + if mode_stage1 and counter < text_len + 400: + tokens, mems = strategy.forward(guided_logits, tokens, mems) + else: + tokens, mems = strategy2.forward(guided_logits, tokens, mems) + if guider_seq is not None: + guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), dim=1) + + if seq[0][counter].item() >= 0: + for si in range(seq.shape[0]): + if seq[si][counter].item() >= 0: + tokens[si, -1] = seq[si, counter] + if guider_seq is not None: + guider_tokens[si, -1] = guider_seq[si, counter-guider_index_delta] + + else: + tokens = torch.cat((tokens, seq[:, counter:counter+1].clone().expand(tokens.shape[0], 1).to(device=tokens.device, dtype=tokens.dtype)), dim=1) + if guider_seq is not None: + guider_tokens = torch.cat((guider_tokens, + guider_seq[:, counter-guider_index_delta:counter+1-guider_index_delta] + .clone().expand(guider_tokens.shape[0], 1).to(device=guider_tokens.device, dtype=guider_tokens.dtype)), dim=1) + + input_tokens = tokens.clone() + if guider_seq is not None: + guider_input_tokens = guider_tokens.clone() + if (index-text_len-1)//400 < (input_tokens.shape[-1]-text_len-1)//400: + boi_idx = ((index-text_len-1)//400 +1)*400+text_len + while boi_idx < input_tokens.shape[-1]: + input_tokens[:, boi_idx] = tokenizer[''] + if guider_seq is not None: + guider_input_tokens[:, boi_idx-guider_index_delta] = tokenizer[''] + boi_idx += 400 + + if strategy.is_done: + break + return strategy.finalize(tokens, mems) + +class InferenceModel_Sequential(CogVideoCacheModel): + def __init__(self, args, transformer=None, parallel_output=True): + super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=-1, cogvideo_stage=1) + # TODO: check it + + def final_forward(self, logits, **kwargs): + logits_parallel = logits + logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float()) + return logits_parallel + +class InferenceModel_Interpolate(CogVideoCacheModel): + def __init__(self, args, transformer=None, parallel_output=True): + super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=10, cogvideo_stage=2) + # TODO: check it + + def final_forward(self, logits, **kwargs): + logits_parallel = logits + logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float()) + return logits_parallel class Predictor(BasePredictor): def setup(self): - subprocess.call("python setup.py install", cwd="/src/Image-Local-Attention", shell=True) - self.translator = GoogleTranslator(source="en", target="zh-CN") + logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.DEBUG, datefmt='%Y-%m-%d %H:%M:%S') + subprocess.call("python setup.py develop", cwd="/src/Image-Local-Attention", shell=True) + sys.path.append('./Image-Local-Attention') + os.environ["SAT_HOME"] = "/sharefs/cogview-new" + args = get_args([ + "--batch-size", "1", + "--tokenizer-type", "fake", + "--mode", "inference", + "--distributed-backend", "nccl", + "--model-parallel-size", "1", + "--fp16", + "--sandwich-ln", + "--temperature", "1.05", + "--max-inference-batch-size", "8"]) + args.layout = [64,464,2064] + args.window_size = 10 + args.additional_seqlen = 2000 + args.cogvideo_stage = 1 + args.do_train = False + args.parallel_size = 1 + args.guidance_alpha = 3.0 + args.generate_frame_num = 5 + args.coglm_temperature = 0.89 + args.coglm_temperature2 = 0.89 + args.generate_frame_num = 5 + args.stage1_max_inference_batch_size = -1 + args.top_k = 12 + args.use_guidance_stage1 = True + args.use_guidance_stage2 = False + args.both_stages = True + args.device = torch.device('cuda') + + self.translator = GoogleTranslator(source="en", target="zh-CN") + self.model_stage1, args = InferenceModel_Sequential.from_pretrained(args, 'cogvideo-stage1') + self.model_stage1.eval() + self.model_stage1 = self.model_stage1.cpu() + self.model_stage2, args = InferenceModel_Interpolate.from_pretrained(args, 'cogvideo-stage2') + self.model_stage2.eval() + self.model_stage2 = self.model_stage2.cpu() + + # enable dsr if model exists + if os.path.exists('/sharefs/cogview-new/cogview2-dsr'): + from sr_pipeline import DirectSuperResolution + dsr_path = auto_create('cogview2-dsr', path=None) + self.dsr = DirectSuperResolution(args, dsr_path, + max_bz=12, onCUDA=False) + else: + self.dsr = None + + self.args = args + torch.cuda.empty_cache() + + + self.generate_frame_num = 5 + + invalid_slices = [slice(tokenizer.num_image_tokens, None)] + self.strategy_cogview2 = CoglmStrategy(invalid_slices, + temperature=1.0, top_k=16) + self.strategy_cogvideo = CoglmStrategy(invalid_slices, + temperature=args.temperature, top_k=args.top_k, + temperature2=args.coglm_temperature2) + def predict( self, @@ -21,65 +484,296 @@ class Predictor(BasePredictor): description="Translate prompt from English to Simplified Chinese (required if not entering Chinese text)", default=True, ), - # both_stages: bool = Input( - # description="Run both stages (uncheck to run only stage 1 for quicker results)", default=True - # ), + both_stages: bool = Input( + description="Run both stages (uncheck to run more quickly and output only a few frames)", default=True + ), use_guidance: bool = Input(description="Use stage 1 guidance (recommended)", default=True), - ) -> typing.List[Path]: + ) -> typing.Iterator[Path]: if translate: - prompt = self.translator.translate(prompt) + prompt = self.translator.translate(prompt.strip()) workdir = tempfile.mkdtemp() - os.makedirs(f"{workdir}/output") - with open(f"{workdir}/input.txt", "w") as f: - f.write(prompt) + os.makedirs(f"{workdir}/output/stage1", exist_ok=True) + os.makedirs(f"{workdir}/output/stage2", exist_ok=True) + if seed is None: seed = randint(0, 2**32) - args = [ - "python", - "cogvideo_pipeline.py", - "--input-source", - f"{workdir}/input.txt", - "--output-path", - f"{workdir}/output", - "--batch-size", - "1", - "--parallel-size", - "1", - "--guidance-alpha", - "3.0", - "--generate-frame-num", - "4", - "--tokenizer-type", - "fake", - "--mode", - "inference", - "--distributed-backend", - "nccl", - "--fp16", - "--model-parallel-size", - "1", - "--temperature", - "1.05", - "--coglm-temperature", - "0.89", - "--top_k", - "12", - "--sandwich-ln", - "--seed", - str(seed), - "--num-workers", - "0", - "--batch-size", - "1", - "--max-inference-batch-size", - "8", - "--both-stages", - ] - if use_guidance: - args.append("--use-guidance-stage1") - print(args) - os.environ["SAT_HOME"] = "/sharefs/cogview-new" - if subprocess.check_output(args, shell=False, cwd="/src"): - output = glob.glob(f"{workdir}/output/**/*.gif") - for f in output: - yield Path(f) + + self.args.seed = seed + self.args.use_guidance_stage1 = use_guidance + with torch.no_grad(): + move_start_time = time.time() + logging.debug("moving stage 2 model to cpu") + self.model_stage2 = self.model_stage2.cpu() + torch.cuda.empty_cache() + logging.debug("moving stage 1 model to cuda") + self.model_stage1 = self.model_stage1.cuda() + logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time)) + + parent_given_tokens = self.process_stage1(self.model_stage1, prompt, duration=4.0, video_raw_text=prompt, video_guidance_text="视频", + image_text_suffix=" 高清摄影", + outputdir=f'{workdir}/output/stage1', batch_size=1) + + logging.debug("moving stage 1 model to cpu") + self.model_stage1 = self.model_stage1.cpu() + torch.cuda.empty_cache() + + yield Path(f"{workdir}/output/stage1/0.gif") + + if both_stages: + move_start_time = time.time() + logging.debug("moving stage 2 model to cuda") + self.model_stage2 = self.model_stage2.cuda() + logging.debug("moving in model2 takes time: {:.2f}".format(time.time()-move_start_time)) + self.process_stage2(self.model_stage2, prompt, duration=2.0, video_raw_text=prompt+" 视频", + video_guidance_text="视频", parent_given_tokens=parent_given_tokens, + outputdir=f'{workdir}/output/stage2', + gpu_rank=0, gpu_parallel_size=1) + yield Path(f"{workdir}/output/stage2/0.gif") + return + + def process_stage1(self, model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", image_text_suffix="", outputdir=None, batch_size=1): + process_start_time = time.time() + args = self.args + use_guide = args.use_guidance_stage1 + + if video_raw_text is None: + video_raw_text = seq_text + mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size + assert batch_size < mbz or batch_size % mbz == 0 + frame_len = 400 + + # generate the first frame: + enc_text = tokenizer.encode(seq_text+image_text_suffix) + seq_1st = enc_text + [tokenizer['']] + [-1]*400 # IV!! # test local!!! # test randboi!!! + logging.info("[Generating First Frame with CogView2]Raw text: {:s}".format(tokenizer.decode(enc_text))) + text_len_1st = len(seq_1st) - frame_len*1 - 1 + + seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0) + output_list_1st = [] + for tim in range(max(batch_size // mbz, 1)): + start_time = time.time() + output_list_1st.append( + my_filling_sequence(model, args,seq_1st.clone(), + batch_size=min(batch_size, mbz), + get_masks_and_position_ids=get_masks_and_position_ids_stage1, + text_len=text_len_1st, + frame_len=frame_len, + strategy=self.strategy_cogview2, + strategy2=self.strategy_cogvideo, + log_text_attention_weights=1.4, + enforce_no_swin=True, + mode_stage1=True, + )[0] + ) + logging.info("[First Frame]Taken time {:.2f}\n".format(time.time() - start_time)) + output_tokens_1st = torch.cat(output_list_1st, dim=0) + given_tokens = output_tokens_1st[:, text_len_1st+1:text_len_1st+401].unsqueeze(1) # given_tokens.shape: [bs, frame_num, 400] + + # generate subsequent frames: + total_frames = self.generate_frame_num + enc_duration = tokenizer.encode(str(float(duration))+"秒") + if use_guide: + video_raw_text = video_raw_text + " 视频" + enc_text_video = tokenizer.encode(video_raw_text) + seq = enc_duration + [tokenizer['']] + enc_text_video + [tokenizer['']] + [-1]*400*self.generate_frame_num + guider_seq = enc_duration + [tokenizer['']] + tokenizer.encode(video_guidance_text) + [tokenizer['']] + [-1]*400*self.generate_frame_num + logging.info("[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format(4/duration, tokenizer.decode(enc_text_video))) + + text_len = len(seq) - frame_len*self.generate_frame_num - 1 + guider_text_len = len(guider_seq) - frame_len*self.generate_frame_num - 1 + seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(batch_size, 1) + guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(batch_size, 1) + + for given_frame_id in range(given_tokens.shape[1]): + seq[:, text_len+1+given_frame_id*400: text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id] + guider_seq[:, guider_text_len+1+given_frame_id*400:guider_text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id] + output_list = [] + + if use_guide: + video_log_text_attention_weights = 0 + else: + guider_seq = None + video_log_text_attention_weights = 1.4 + + for tim in range(max(batch_size // mbz, 1)): + start_time = time.time() + input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone() + guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None + output_list.append( + my_filling_sequence(model, args,input_seq, + batch_size=min(batch_size, mbz), + get_masks_and_position_ids=get_masks_and_position_ids_stage1, + text_len=text_len, frame_len=frame_len, + strategy=self.strategy_cogview2, + strategy2=self.strategy_cogvideo, + log_text_attention_weights=video_log_text_attention_weights, + guider_seq=guider_seq2, + guider_text_len=guider_text_len, + guidance_alpha=args.guidance_alpha, + limited_spatial_channel_mem=True, + mode_stage1=True, + )[0] + ) + + output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:] + + # decoding + imgs, sred_imgs, txts = [], [], [] + for seq in output_tokens: + decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)] + imgs.append(decoded_imgs) # only the last image (target) + + assert len(imgs) == batch_size + save_tokens = output_tokens[:, :+total_frames*400].reshape(-1, total_frames, 400).cpu() + if outputdir is not None: + for clip_i in range(len(imgs)): + # os.makedirs(output_dir_full_paths[clip_i], exist_ok=True) + my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False) + os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25") + torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt')) + + logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time)) + + return save_tokens + + def process_stage2(self, model, seq_text, duration, video_raw_text=None, video_guidance_text="视频", parent_given_tokens=None, conddir=None, outputdir=None, gpu_rank=0, gpu_parallel_size=1): + stage2_starttime = time.time() + args = self.args + use_guidance = args.use_guidance_stage2 + if args.both_stages: + move_start_time = time.time() + logging.debug("moving stage-2 model to cuda") + model = model.cuda() + logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time)) + + try: + if parent_given_tokens is None: + assert conddir is not None + parent_given_tokens = torch.load(os.path.join(conddir, 'frame_tokens.pt'), map_location='cpu') + sample_num_allgpu = parent_given_tokens.shape[0] + sample_num = sample_num_allgpu // gpu_parallel_size + assert sample_num * gpu_parallel_size == sample_num_allgpu + parent_given_tokens = parent_given_tokens[gpu_rank*sample_num:(gpu_rank+1)*sample_num] + except: + logging.critical("No frame_tokens found in interpolation, skip") + return False + + # CogVideo Stage2 Generation + while duration >= 0.5: # TODO: You can change the boundary to change the frame rate + parent_given_tokens_num = parent_given_tokens.shape[1] + generate_batchsize_persample = (parent_given_tokens_num-1)//2 + generate_batchsize_total = generate_batchsize_persample * sample_num + total_frames = self.generate_frame_num + frame_len = 400 + enc_text = tokenizer.encode(seq_text) + enc_duration = tokenizer.encode(str(float(duration))+"秒") + seq = enc_duration + [tokenizer['']] + enc_text + [tokenizer['']] + [-1]*400*self.generate_frame_num + text_len = len(seq) - frame_len*self.generate_frame_num - 1 + + logging.info("[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format(int(4/duration), tokenizer.decode(enc_text))) + + # generation + seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1) + for sample_i in range(sample_num): + for i in range(generate_batchsize_persample): + seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i] + seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1] + seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2] + + if use_guidance: + guider_seq = enc_duration + [tokenizer['']] + tokenizer.encode(video_guidance_text) + [tokenizer['']] + [-1]*400*self.generate_frame_num + guider_text_len = len(guider_seq) - frame_len*self.generate_frame_num - 1 + guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1) + for sample_i in range(sample_num): + for i in range(generate_batchsize_persample): + guider_seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i] + guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1] + guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2] + video_log_text_attention_weights = 0 + else: + guider_seq=None + guider_text_len=0 + video_log_text_attention_weights = 1.4 + + mbz = args.max_inference_batch_size + + assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0 + output_list = [] + start_time = time.time() + for tim in range(max(generate_batchsize_total // mbz, 1)): + input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone() + guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None + output_list.append( + my_filling_sequence(model, args, input_seq, + batch_size=min(generate_batchsize_total, mbz), + get_masks_and_position_ids=get_masks_and_position_ids_stage2, + text_len=text_len, frame_len=frame_len, + strategy=self.strategy_cogview2, + strategy2=self.strategy_cogvideo, + log_text_attention_weights=video_log_text_attention_weights, + mode_stage1=False, + guider_seq=guider_seq2, + guider_text_len=guider_text_len, + guidance_alpha=args.guidance_alpha, + limited_spatial_channel_mem=True, + )[0] + ) + logging.info("Duration {:.2f}, Taken time {:.2f}\n".format(duration, time.time() - start_time)) + + output_tokens = torch.cat(output_list, dim=0) + output_tokens = output_tokens[:, text_len+1:text_len+1+(total_frames)*400].reshape(sample_num, -1, 400*total_frames) + output_tokens_merge = torch.cat((output_tokens[:, :, :1*400], + output_tokens[:, :, 400*3:4*400], + output_tokens[:, :, 400*1:2*400], + output_tokens[:, :, 400*4:(total_frames)*400]), dim=2).reshape(sample_num, -1, 400) + + output_tokens_merge = torch.cat((output_tokens_merge, output_tokens[:, -1:, 400*2:3*400]), dim=1) + duration /= 2 + parent_given_tokens = output_tokens_merge + + logging.info("CogVideo Stage2 completed. Taken time {:.2f}\n".format(time.time() - stage2_starttime)) + + enc_text = tokenizer.encode(seq_text) + frame_num_per_sample = parent_given_tokens.shape[1] + parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400) + + logging.debug("moving stage 2 model to cpu") + self.model_stage2 = self.model_stage2.cpu() + torch.cuda.empty_cache() + + # use dsr if loaded + if (self.dsr): + # direct super-resolution by CogView2 + logging.info("[Direct super-resolution]") + dsr_starttime = time.time() + text_seq = torch.cuda.LongTensor(enc_text, device=args.device).unsqueeze(0).repeat(parent_given_tokens_2d.shape[0], 1) + sred_tokens = self.dsr(text_seq, parent_given_tokens_2d) + decoded_sr_videos = [] + + for sample_i in range(sample_num): + decoded_sr_imgs = [] + for frame_i in range(frame_num_per_sample): + decoded_sr_img = tokenizer.decode(image_ids=sred_tokens[frame_i+sample_i*frame_num_per_sample][-3600:]) + decoded_sr_imgs.append(torch.nn.functional.interpolate(decoded_sr_img, size=(480, 480))) + decoded_sr_videos.append(decoded_sr_imgs) + + for sample_i in range(sample_num): + my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False) + os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125") + + logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime)) + else: + output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:] + + imgs, sred_imgs, txts = [], [], [] + for seq in output_tokens: + decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)] + imgs.append(decoded_imgs) # only the last image (target) + + if outputdir is not None: + for clip_i in range(len(imgs)): + # os.makedirs(output_dir_full_paths[clip_i], exist_ok=True) + my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False) + os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25") + +