feat(args): add validation and arg interface for training parameters

- Add field validators for model type and validation settings
- Implement command line argument parsing with argparse
- Add type hints and documentation for training parameters
- Support configuration of model, training, and validation parameters
This commit is contained in:
OleehyO 2025-01-01 14:40:09 +00:00
parent 04a60e7435
commit 26b87cd4ff

View File

@ -1,7 +1,7 @@
import datetime
import argparse
from typing import Dict, Any, Literal, List, Tuple
from pydantic import BaseModel, field_validator
from pydantic import BaseModel, field_validator, ValidationInfo
from pathlib import Path
@ -30,7 +30,7 @@ class Args(BaseModel):
seed: int | None = None
train_epochs: int
train_steps: int | None = None
checkpointing_steps: int = 500
checkpointing_steps: int = 200
checkpointing_limit: int = 10
batch_size: int
@ -93,42 +93,114 @@ class Args(BaseModel):
# The height and width set in the bucket must be an integer multiple of 8 (temporal_compression_rate[8])
# gen_video_resolution: Tuple[int, int, int] | None # shape: (frames, height, width)
@field_validator("image_column")
def validate_image_column(cls, v: str | None, info: ValidationInfo) -> str | None:
values = info.data
if values.get("model_type") == "i2v" and not v:
raise ValueError("image_column must be specified when using i2v model")
return v
@field_validator("validation_dir", "validation_prompts")
def validate_validation_required_fields(cls, v: Any, info: ValidationInfo) -> Any:
values = info.data
if values.get("do_validation") and not v:
field_name = info.field_name
raise ValueError(f"{field_name} must be specified when do_validation is True")
return v
@field_validator("validation_images")
def validate_validation_images(cls, v: str | None, info: ValidationInfo) -> str | None:
values = info.data
if values.get("do_validation") and values.get("model_type") == "i2v" and not v:
raise ValueError("validation_images must be specified when do_validation is True and model_type is i2v")
return v
@field_validator("validation_videos")
def validate_validation_videos(cls, v: str | None, info: ValidationInfo) -> str | None:
values = info.data
if values.get("do_validation") and values.get("model_type") == "v2v" and not v:
raise ValueError("validation_videos must be specified when do_validation is True and model_type is v2v")
return v
@field_validator("validation_steps")
def validate_validation_steps(cls, v: int | None, info: ValidationInfo) -> int | None:
values = info.data
if values.get("do_validation"):
if v is None:
raise ValueError("validation_steps must be specified when do_validation is True")
if values.get("checkpointing_steps") and v % values["checkpointing_steps"] != 0:
raise ValueError("validation_steps must be a multiple of checkpointing_steps")
return v
@classmethod
def parse_args(cls):
"""Parse command line arguments and return Args instance"""
parser = argparse.ArgumentParser()
# Required arguments
parser.add_argument("--model_path", type=str, required=True)
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--model_type", type=str, required=True)
parser.add_argument("--training_type", type=str, required=True)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--seed", type=int, required=True)
parser.add_argument("--nccl_timeout", type=int, required=True)
parser.add_argument("--mixed_precision", type=str, required=True)
parser.add_argument("--gradient_accumulation_steps", type=int, required=True)
parser.add_argument("--data_root", type=str, required=True)
parser.add_argument("--caption_column", type=str, required=True)
parser.add_argument("--video_column", type=str, required=True)
parser.add_argument("--image_column", type=str)
parser.add_argument("--train_resolution", type=str, required=True)
parser.add_argument("--batch_size", type=int, required=True)
parser.add_argument("--num_workers", type=int, required=True)
parser.add_argument("--pin_memory", type=str, required=True)
parser.add_argument("--report_to", type=str, required=True)
parser.add_argument("--train_epochs", type=int, required=True)
parser.add_argument("--checkpointing_steps", type=int, required=True)
parser.add_argument("--checkpointing_limit", type=int, required=True)
parser.add_argument("--do_validation", type=bool)
parser.add_argument("--validation_steps", type=int)
parser.add_argument("--validation_dir", type=str)
parser.add_argument("--validation_prompts", type=str)
parser.add_argument("--validation_images", type=str)
parser.add_argument("--validation_videos", type=str)
parser.add_argument("--gen_fps", type=int)
# Training hyperparameters
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--train_epochs", type=int, default=10)
parser.add_argument("--train_steps", type=int, default=None)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--optimizer", type=str, default="adamw")
parser.add_argument("--beta1", type=float, default=0.9)
parser.add_argument("--beta2", type=float, default=0.95)
parser.add_argument("--beta3", type=float, default=0.98)
parser.add_argument("--epsilon", type=float, default=1e-8)
parser.add_argument("--weight_decay", type=float, default=1e-4)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--resume_from_checkpoint", type=str)
# Learning rate scheduler
parser.add_argument("--lr_scheduler", type=str, default="constant_with_warmup")
parser.add_argument("--lr_warmup_steps", type=int, default=100)
parser.add_argument("--lr_num_cycles", type=int, default=1)
parser.add_argument("--lr_power", type=float, default=1.0)
# Data loading
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--pin_memory", type=bool, default=True)
parser.add_argument("--image_column", type=str, default=None)
# Model configuration
parser.add_argument("--mixed_precision", type=str, default="no")
parser.add_argument("--gradient_checkpointing", type=bool, default=True)
parser.add_argument("--enable_slicing", type=bool, default=True)
parser.add_argument("--enable_tiling", type=bool, default=True)
parser.add_argument("--nccl_timeout", type=int, default=1800)
# LoRA parameters
parser.add_argument("--rank", type=int, default=128)
parser.add_argument("--lora_alpha", type=int, default=64)
parser.add_argument("--target_modules", type=str, nargs="+",
default=["to_q", "to_k", "to_v", "to_out.0"])
# Checkpointing
parser.add_argument("--checkpointing_steps", type=int, default=200)
parser.add_argument("--checkpointing_limit", type=int, default=10)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
# Validation
parser.add_argument("--do_validation", type=bool, default=False)
parser.add_argument("--validation_steps", type=int, default=None)
parser.add_argument("--validation_dir", type=str, default=None)
parser.add_argument("--validation_prompts", type=str, default=None)
parser.add_argument("--validation_images", type=str, default=None)
parser.add_argument("--validation_videos", type=str, default=None)
parser.add_argument("--gen_fps", type=int, default=15)
args = parser.parse_args()
@ -137,11 +209,3 @@ class Args(BaseModel):
args.train_resolution = (int(frames), int(height), int(width))
return cls(**vars(args))
# @field_validator("...", mode="after")
# def foo(cls, foobar):
# ...
# @field_validator("...", mode="before")
# def bar(cls, barbar):
# ...