This commit is contained in:
zR 2024-08-07 19:27:53 +08:00
parent 5a69462c8b
commit 125432d403
5 changed files with 78 additions and 48 deletions

View File

@ -20,6 +20,8 @@
## Update and News
- 🔥 **News**: `2024/8/7`: CogVideoX has been integrated into `diffusers` version 0.30.0. Inference can now be performed
on a single 3090 GPU. For more details, please refer to the [code](inference/cli_demo.py).
- 🔥 **News**: ``2024/8/6``: We have also open-sourced **3D Causal VAE** used in **CogVideoX-2B**, which can reconstruct
the video almost losslessly.
- 🔥 **News**: ``2024/8/6``: We have open-sourced **CogVideoX-2B**the first model in the CogVideoX series of video
@ -106,14 +108,14 @@ along with related basic information:
| Model Name | CogVideoX-2B |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prompt Language | English |
| GPU Memory Required for Inference (FP16) | 18GB if using [SAT](https://github.com/THUDM/SwissArmyTransformer); 36GB if using diffusers (will be optimized before the PR is merged) |
| Single GPU Inference (FP16) | 18GB using [SAT](https://github.com/THUDM/SwissArmyTransformer) <br> 23.9GB using diffusers |
| Multi GPUs Inference (FP16) | 20GB minimum per GPU using diffusers |
| GPU Memory Required for Fine-tuning(bs=1) | 40GB |
| Prompt Max Length | 226 Tokens |
| Video Length | 6 seconds |
| Frames Per Second | 8 frames |
| Resolution | 720 * 480 |
| Quantized Inference | Not Supported |
| Multi-card Inference | Not Supported |
| Download Link (HF diffusers Model) | 🤗 [Huggingface](https://huggingface.co/THUDM/CogVideoX-2B) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b) [💫 WiseModel](https://wisemodel.cn/models/ZhipuAI/CogVideoX-2b) |
| Download Link (SAT Model) | [SAT](./sat/README.md) |
@ -132,14 +134,16 @@ of the **CogVideoX** open-source model.
CogVideoX is trained on long caption, we need to convert the input text to be consistent with the training
distribution using a LLM. By default, the script uses GLM4, but it can also be replaced with any other LLM such as
GPT, Gemini, etc.
+ [gradio_web_demo](inference/gradio_web_demo.py): A simple gradio web UI demonstrating how to use the CogVideoX-2B model to generate
+ [gradio_web_demo](inference/gradio_web_demo.py): A simple gradio web UI demonstrating how to use the CogVideoX-2B
model to generate
videos.
<div style="text-align: center;">
<img src="resources/gradio_demo.png" style="width: 100%; height: auto;" />
</div>
+ [streamlit_web_demo](inference/streamlit_web_demo.py): A simple streamlit web application demonstrating how to use the CogVideoX-2B model
+ [streamlit_web_demo](inference/streamlit_web_demo.py): A simple streamlit web application demonstrating how to use the
CogVideoX-2B model
to generate videos.
<div style="text-align: center;">

View File

@ -21,24 +21,26 @@
## 项目更新
- 🔥 **News**: ``2024/8/7``: CogVideoX 已经合并入 `diffusers` 0.30.0版本单张3090可以推理详情请见[代码](inference/cli_demo.py)。
- 🔥 **News**: ``2024/8/6``: 我们开源 **3D Causal VAE**,用于 **CogVideoX-2B**,可以几乎无损地重构视频。
- 🔥 **News**: ``2024/8/6``: 我们开源 CogVideoX 系列视频生成模型的第一个模型, **CogVideoX-2B**
- 🌱 **Source**: ```2022/5/19```: 我们开源了 CogVideo 视频生成模型(现在你可以在 `CogVideo` 分支中看到),这是首个开源的基于 Transformer 的大型文本生成视频模型,您可以访问 [ICLR'23 论文](https://arxiv.org/abs/2205.15868) 查看技术细节。
**性能更强,参数量更大的模型正在到来的路上~,欢迎关注**
- 🌱 **Source**: ```2022/5/19```: 我们开源了 CogVideo 视频生成模型(现在你可以在 `CogVideo` 分支中看到),这是首个开源的基于
Transformer 的大型文本生成视频模型,您可以访问 [ICLR'23 论文](https://arxiv.org/abs/2205.15868) 查看技术细节。
**性能更强,参数量更大的模型正在到来的路上~,欢迎关注**
## 目录
跳转到指定部分:
- [快速开始](#快速开始)
- [SAT](#sat)
- [Diffusers](#Diffusers)
- [SAT](#sat)
- [Diffusers](#Diffusers)
- [CogVideoX-2B 视频作品](#cogvideox-2b-视频作品)
- [CogVideoX模型介绍](#模型介绍)
- [完整项目代码结构](#完整项目代码结构)
- [Inference](#inference)
- [SAT](#sat)
- [Tools](#tools)
- [Inference](#inference)
- [SAT](#sat)
- [Tools](#tools)
- [开源项目规划](#开源项目规划)
- [模型协议](#模型协议)
- [CogVideo(ICLR'23)模型介绍](#cogvideoiclr23)
@ -53,8 +55,9 @@
### SAT
查看sat文件夹下的[sat_demo](sat/README.md):包含了 SAT 权重的推理代码和微调代码,推荐基于此代码进行 CogVideoX 模型结构的改进,研究者使用该代码可以更好的进行快速的迭代和开发。
(18 GB 推理, 40GB lora微调)
查看sat文件夹下的[sat_demo](sat/README.md):包含了 SAT 权重的推理代码和微调代码,推荐基于此代码进行 CogVideoX
模型结构的改进,研究者使用该代码可以更好的进行快速的迭代和开发。
(18 GB 推理, 40GB lora微调)
### Diffusers
@ -64,7 +67,6 @@ pip install -r requirements.txt
查看[diffusers_demo](inference/cli_demo.py)包含对推理代码更详细的解释包括各种关键的参数。36GB 推理,显存优化以及微调代码正在开发)
## CogVideoX-2B 视频作品
<div align="center">
@ -93,19 +95,19 @@ CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideox) 同源的开源
下表战展示目前我们提供的视频生成模型列表,以及相关基础信息:
| 模型名字 | CogVideoX-2B |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 提示词语言 | English |
| 推理显存消耗 (FP-16) | 36GB using diffusers (will be optimized before the PR is merged) and 18GB using [SAT](https://github.com/THUDM/SwissArmyTransformer) |
| 微调显存消耗 (bs=1) | 42GB |
| 提示词长度上限 | 226 Tokens |
| 视频长度 | 6 seconds |
| 帧率(每秒) | 8 frames |
| 视频分辨率 | 720 * 480 |
| 量化推理 | 不支持 |
| 多卡推理 | 不支持 |
| 下载地址 (Diffusers 模型) | 🤗 [Huggingface](https://huggingface.co/THUDM/CogVideoX-2B) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b) |
| 下载地址 (SAT 模型) | [SAT](./sat/README_zh.md) |
| 模型名 | CogVideoX-2B |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 提示词语言 | English |
| 单GPU推理 (FP-16) 显存消耗 | 18GB using [SAT](https://github.com/THUDM/SwissArmyTransformer) <br> 23.9GB using diffusers |
| 多GPU推理 (FP-16) 显存消耗 | 20GB minimum per GPU using diffusers |
| 微调显存消耗 (bs=1) | 42GB |
| 提示词长度上限 | 226 Tokens |
| 视频长度 | 6 seconds |
| 帧率(每秒) | 8 frames |
| 视频分辨率 | 720 * 480 |
| 量化推理 | 不支持 |
| 下载地址 (Diffusers 模型) | 🤗 [Huggingface](https://huggingface.co/THUDM/CogVideoX-2B) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b) |
| 下载地址 (SAT 模型) | [SAT](./sat/README_zh.md) |
## 完整项目代码结构
@ -115,7 +117,8 @@ CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideox) 同源的开源
+ [diffusers_demo](inference/cli_demo.py): 更详细的推理代码讲解,常见参数的意义,在这里都会提及。
+ [diffusers_vae_demo](inference/cli_vae_demo.py): 单独执行VAE的推理代码目前需要71GB显存将来会优化。
+ [convert_demo](inference/convert_demo.py): 如何将用户的输入转换成适合 CogVideoX的长输入。因为CogVideoX是在长文本上训练的所以我们需要把输入文本的分布通过LLM转换为和训练一致的长文本。脚本中默认使用GLM4也可以替换为GPT、Gemini等任意大语言模型。
+ [convert_demo](inference/convert_demo.py): 如何将用户的输入转换成适合
CogVideoX的长输入。因为CogVideoX是在长文本上训练的所以我们需要把输入文本的分布通过LLM转换为和训练一致的长文本。脚本中默认使用GLM4也可以替换为GPT、Gemini等任意大语言模型。
+ [gradio_web_demo](inference/gradio_web_demo.py): 一个简单的gradio网页应用展示如何使用 CogVideoX-2B 模型生成视频。
<div style="text-align: center;">
@ -140,9 +143,10 @@ CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideox) 同源的开源
+ [convert_weight_sat2hf](tools/convert_weight_sat2hf.py): 将 SAT 模型权重转换为 Huggingface 模型权重。
+ [caption_demo](tools/caption/README_zh.md): Caption 工具,对视频理解并用文字输出的模型。
## CogVideo(ICLR'23)
## CogVideo(ICLR'23)
[CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers](https://arxiv.org/abs/2205.15868) 的官方repo位于[CogVideo branch](https://github.com/THUDM/CogVideo/tree/CogVideo)。
[CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers](https://arxiv.org/abs/2205.15868)
的官方repo位于[CogVideo branch](https://github.com/THUDM/CogVideo/tree/CogVideo)。
**CogVideo可以生成高帧率视频下面展示了一个32帧的4秒视频。**
@ -155,11 +159,12 @@ CogVideoX是 [清影](https://chatglm.cn/video?fr=osm_cogvideox) 同源的开源
<video src="https://github.com/user-attachments/assets/ea3af39a-3160-4999-90ec-2f7863c5b0e9" width="80%" controls autoplay></video>
</div>
CogVideo的demo网站在[https://models.aminer.cn/cogvideo](https://models.aminer.cn/cogvideo/)。您可以在这里体验文本到视频生成。*原始输入为中文。*
CogVideo的demo网站在[https://models.aminer.cn/cogvideo](https://models.aminer.cn/cogvideo/)。您可以在这里体验文本到视频生成。
*原始输入为中文。*
## 引用
🌟 如果您发现我们的工作有所帮助欢迎引用我们的文章留下宝贵的stars
🌟 如果您发现我们的工作有所帮助欢迎引用我们的文章留下宝贵的stars
```
@article{yang2024cogvideox,

View File

@ -22,7 +22,7 @@ from diffusers import CogVideoXPipeline
def export_to_video_imageio(
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
) -> str:
"""
Export the video frames to a video file using imageio lib to Avoid "green screen" issue (for example CogVideoX)
@ -38,17 +38,34 @@ def export_to_video_imageio(
def generate_video(
prompt: str,
model_path: str,
output_path: str = "./output.mp4",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
device: str = "cuda",
dtype: torch.dtype = torch.float16,
prompt: str,
model_path: str,
output_path: str = "./output.mp4",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
device: str = "cuda",
dtype: torch.dtype = torch.float16,
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- model_path (str): The path of the pre-trained model to be used.
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- device (str): The device to use for computation (e.g., "cuda" or "cpu").
- dtype (torch.dtype): The data type for computation (default is torch.float16).
"""
# Load the pre-trained CogVideoX pipeline with the specified precision (float16) and move it to the specified device
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
# add device_map="balanced" in the from_pretrained function and remove
# `pipe.enable_model_cpu_offload()` to enable Multi GPUs (2 or more and each one must have more than 20GB memory) inference.
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype)
pipe.enable_model_cpu_offload()
# Encode the prompt to get the prompt embeddings
prompt_embeds, _ = pipe.encode_prompt(
@ -60,18 +77,19 @@ def generate_video(
device=device, # Device to use for computation
dtype=dtype, # Data type for computation
)
# Must enable model CPU offload to avoid OOM issue on GPU with 24GB memory
pipe.enable_model_cpu_offload()
# Generate the video frames using the pipeline
video = pipe(
num_inference_steps=num_inference_steps, # Number of inference steps
num_inference_steps=5, # Number of inference steps
guidance_scale=guidance_scale, # Guidance scale for classifier-free guidance
prompt_embeds=prompt_embeds, # Encoded prompt embeddings
negative_prompt_embeds=torch.zeros_like(prompt_embeds), # Not Supported negative prompt
).frames[0]
# Export the generated frames to a video file. fps must be 8
export_to_video_imageio(video, output_path, fps=8)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")

View File

@ -16,7 +16,8 @@ import PIL
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=dtype).to(device)
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=dtype)
pipe.enable_model_cpu_offload()
sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
@ -104,7 +105,7 @@ def infer(
device=device,
dtype=dtype,
)
pipe.enable_model_cpu_offload()
video = pipe(
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,

View File

@ -39,7 +39,9 @@ def load_model(model_path: str, dtype: torch.dtype, device: str) -> CogVideoXPip
Returns:
- CogVideoXPipeline: Loaded model pipeline.
"""
return CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype)
pipe.enable_model_cpu_offload()
return pipe
# Define a function to generate video based on the provided prompt and model path