From 78275b04806c56de6fc3b62cec70b28a0fa67703 Mon Sep 17 00:00:00 2001 From: Yuxuan Zhang <2448370773@qq.com> Date: Mon, 13 Jan 2025 20:02:06 +0800 Subject: [PATCH 1/3] add comment of bash scripts --- finetune/train_ddp_i2v.sh | 10 +++++----- finetune/train_ddp_t2v.sh | 10 +++++----- finetune/train_zero_i2v.sh | 12 ++++++------ finetune/train_zero_t2v.sh | 12 ++++++------ 4 files changed, 22 insertions(+), 22 deletions(-) diff --git a/finetune/train_ddp_i2v.sh b/finetune/train_ddp_i2v.sh index ecd322b..d05661f 100644 --- a/finetune/train_ddp_i2v.sh +++ b/finetune/train_ddp_i2v.sh @@ -28,11 +28,11 @@ DATA_ARGS=( # Training Configuration TRAIN_ARGS=( - --train_epochs 10 + --train_epochs 10 # number of training epochs + --seed 42 # random seed --batch_size 1 --gradient_accumulation_steps 1 - --mixed_precision "bf16" # ["no", "fp16"] - --seed 42 + --mixed_precision "bf16" # ["no", "fp16"] # Only CogVideoX-2B supports fp16 training ) # System Configuration @@ -44,8 +44,8 @@ SYSTEM_ARGS=( # Checkpointing Configuration CHECKPOINT_ARGS=( - --checkpointing_steps 5 - --checkpointing_limit 10 + --checkpointing_steps 10 # save checkpoint every x steps + --checkpointing_limit 2 # maximum number of checkpoints to keep, after which the oldest one is deleted --resume_from_checkpoint "/absolute/path/to/checkpoint_dir" # if you want to resume from a checkpoint, otherwise, comment this line ) diff --git a/finetune/train_ddp_t2v.sh b/finetune/train_ddp_t2v.sh index 4340d56..994a440 100644 --- a/finetune/train_ddp_t2v.sh +++ b/finetune/train_ddp_t2v.sh @@ -27,11 +27,11 @@ DATA_ARGS=( # Training Configuration TRAIN_ARGS=( - --train_epochs 10 + --train_epochs 10 # number of training epochs + --seed 42 # random seed --batch_size 1 --gradient_accumulation_steps 1 - --mixed_precision "bf16" # ["no", "fp16"] - --seed 42 + --mixed_precision "bf16" # ["no", "fp16"] # Only CogVideoX-2B supports fp16 training ) # System Configuration @@ -43,8 +43,8 @@ SYSTEM_ARGS=( # Checkpointing Configuration CHECKPOINT_ARGS=( - --checkpointing_steps 5 - --checkpointing_limit 10 + --checkpointing_steps 10 # save checkpoint every x steps + --checkpointing_limit 2 # maximum number of checkpoints to keep, after which the oldest one is deleted --resume_from_checkpoint "/absolute/path/to/checkpoint_dir" # if you want to resume from a checkpoint, otherwise, comment this line ) diff --git a/finetune/train_zero_i2v.sh b/finetune/train_zero_i2v.sh index 2357a7e..03f2c93 100644 --- a/finetune/train_zero_i2v.sh +++ b/finetune/train_zero_i2v.sh @@ -23,18 +23,18 @@ DATA_ARGS=( --caption_column "prompt.txt" --video_column "videos.txt" # --image_column "images.txt" # comment this line will use first frame of video as image conditioning - --train_resolution "81x768x1360" # (frames x height x width), frames should be 8N+1 + --train_resolution "81x768x1360" # (frames x height x width), frames should be 8N+1 and height, width should be multiples of 16 ) # Training Configuration TRAIN_ARGS=( - --train_epochs 10 - --seed 42 + --train_epochs 10 # number of training epochs + --seed 42 # random seed ######### Please keep consistent with deepspeed config file ########## --batch_size 1 --gradient_accumulation_steps 1 - --mixed_precision "bf16" # ["no", "fp16"] + --mixed_precision "bf16" # ["no", "fp16"] Only CogVideoX-2B supports fp16 training ######################################################################## ) @@ -47,8 +47,8 @@ SYSTEM_ARGS=( # Checkpointing Configuration CHECKPOINT_ARGS=( - --checkpointing_steps 10 - --checkpointing_limit 2 + --checkpointing_steps 10 # save checkpoint every x steps + --checkpointing_limit 2 # maximum number of checkpoints to keep, after which the oldest one is deleted # --resume_from_checkpoint "/absolute/path/to/checkpoint_dir" # if you want to resume from a checkpoint, otherwise, comment this line ) diff --git a/finetune/train_zero_t2v.sh b/finetune/train_zero_t2v.sh index 80dbca3..265b08d 100644 --- a/finetune/train_zero_t2v.sh +++ b/finetune/train_zero_t2v.sh @@ -22,18 +22,18 @@ DATA_ARGS=( --data_root "/absolute/path/to/your/data_root" --caption_column "prompt.txt" --video_column "videos.txt" - --train_resolution "81x768x1360" # (frames x height x width), frames should be 8N+1 + --train_resolution "81x768x1360" # (frames x height x width), frames should be 8N+1 and height, width should be multiples of 16 ) # Training Configuration TRAIN_ARGS=( - --train_epochs 10 - --seed 42 + --train_epochs 10 # number of training epochs + --seed 42 # random seed ######### Please keep consistent with deepspeed config file ########## --batch_size 1 --gradient_accumulation_steps 1 - --mixed_precision "bf16" # ["no", "fp16"] + --mixed_precision "bf16" # ["no", "fp16"] Only CogVideoX-2B supports fp16 training ######################################################################## ) @@ -46,8 +46,8 @@ SYSTEM_ARGS=( # Checkpointing Configuration CHECKPOINT_ARGS=( - --checkpointing_steps 10 - --checkpointing_limit 2 + --checkpointing_steps 10 # save checkpoint every x steps + --checkpointing_limit 2 # maximum number of checkpoints to keep, after which the oldest one is deleted # --resume_from_checkpoint "/absolute/path/to/checkpoint_dir" # if you want to resume from a checkpoint, otherwise, comment this line ) From 7993670957c3453652ae1ab58186ad7a764b878f Mon Sep 17 00:00:00 2001 From: Yuxuan Zhang <2448370773@qq.com> Date: Tue, 14 Jan 2025 11:31:25 +0800 Subject: [PATCH 2/3] zero_to_bf16 --- finetune/trainer.py | 6 - finetune/zero_to_fp32.py | 848 +++++++++++++++++++++++++++++++++++++++ 2 files changed, 848 insertions(+), 6 deletions(-) create mode 100644 finetune/zero_to_fp32.py diff --git a/finetune/trainer.py b/finetune/trainer.py index 6e980af..46171e9 100644 --- a/finetune/trainer.py +++ b/finetune/trainer.py @@ -768,9 +768,3 @@ class Trainer: output_dir=self.args.output_dir, ) self.accelerator.save_state(save_path, safe_serialization=True) - pipe = self.initialize_pipeline() - pipe_save_path = Path(self.args.output_dir) / f"checkpoint-pipeline-{global_step}" - pipe_save_path.mkdir(parents=True, exist_ok=True) - pipe.save_pretrained(pipe_save_path) - del pipe - free_memory() diff --git a/finetune/zero_to_fp32.py b/finetune/zero_to_fp32.py new file mode 100644 index 0000000..3c5ed88 --- /dev/null +++ b/finetune/zero_to_fp32.py @@ -0,0 +1,848 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: +# python zero_to_fp32.py . output_dir/ +# or +# python zero_to_fp32.py . output_dir/ --safe_serialization + +import argparse +import torch +import glob +import math +import os +import re +import gc +import json +import numpy as np +from tqdm import tqdm +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device, weights_only=False) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + total_files = len(files) + state_dicts = [] + for f in tqdm(files, desc='Loading checkpoint shards'): + state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +class GatheredTensor: + """ + A pseudo tensor that collects partitioned weights. + It is more memory efficient when there are multiple groups. + """ + + def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): + self.flat_groups = flat_groups + self.flat_groups_offset = flat_groups_offset + self.offset = offset + self.partitioned_numel = partitioned_numel + self.shape = shape + self.dtype = self.flat_groups[0][0].dtype + + def contiguous(self): + """ + Merge partitioned weights from flat_groups into a single tensor. + """ + end_idx = self.offset + self.partitioned_numel + world_size = len(self.flat_groups) + pad_flat_param_chunks = [] + + for rank_i in range(world_size): + # for each rank, we need to collect weights from related group/groups + flat_groups_at_rank_i = self.flat_groups[rank_i] + start_group_id = None + end_group_id = None + for group_id in range(len(self.flat_groups_offset)): + if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: + start_group_id = group_id + if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: + end_group_id = group_id + break + # collect weights from related group/groups + for group_id in range(start_group_id, end_group_id + 1): + flat_tensor = flat_groups_at_rank_i[group_id] + start_offset = self.offset - self.flat_groups_offset[group_id] + end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] + pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) + + # collect weights from all ranks + pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) + param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() + return param + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size + + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) + for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # memory efficient tensor + tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) + state_dict[name] = tensor + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def to_torch_tensor(state_dict, return_empty_tensor=False): + """ + Convert state_dict of GatheredTensor to torch tensor + """ + torch_state_dict = {} + converted_tensors = {} + for name, tensor in state_dict.items(): + tensor_id = id(tensor) + if tensor_id in converted_tensors: # shared tensors + shared_tensor = torch_state_dict[converted_tensors[tensor_id]] + torch_state_dict[name] = shared_tensor + else: + converted_tensors[tensor_id] = name + if return_empty_tensor: + torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) + else: + torch_state_dict[name] = tensor.contiguous() + return torch_state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag=None, + exclude_frozen_parameters=False, + lazy_mode=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. + Convert the pesduo tensor to torch tensor by ``.contiguous()`` + + Returns: + - pytorch ``state_dict`` + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + Note: the above usage may not work if your application doesn't have sufficient free CPU memory. + You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. Or you can load state_dict in lazy mode :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu + for name, lazy_tensor in state_dict.item(): + tensor = lazy_tensor.contiguous() # to cpu + print(name, tensor) + # del tensor to release memory if it no longer in use + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + if lazy_mode: + return state_dict + else: + return to_torch_tensor(state_dict) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=False, + tag=None, + exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_dir``: directory to the pytorch fp32 state_dict output files + - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB + - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + # Dependency pre-check + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + print('If you want to use `safe_serialization`, please `pip install safetensors`') + raise + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') + raise + + # Convert zero checkpoint to state_dict + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, + tag, + exclude_frozen_parameters, + lazy_mode=True) + + # Shard the model if it is too big. + weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" + if max_shard_size is not None: + filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") + # an memory-efficient approach for sharding + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size) + else: + from collections import namedtuple + StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) + state_dict_split = StateDictSplit(is_sharded=False, + filename_to_tensors={weights_name: list(state_dict.keys())}) + + # Save the model by shard + os.makedirs(output_dir, exist_ok=True) + filename_to_tensors = state_dict_split.filename_to_tensors.items() + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + # release the memory of current shard + for tensor_name in list(shard_state_dict.keys()): + del state_dict[tensor_name] + del shard_state_dict[tensor_name] + del shard_state_dict + gc.collect() + + # Save index if sharded + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" + save_index_file = os.path.join(output_dir, save_index_file) + with open(save_index_file, "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +def convert_zero_checkpoint_to_bf16_state_dict(checkpoint_dir, + output_dir, + max_shard_size="5GB", + safe_serialization=True, + tag=None, + exclude_frozen_parameters=False): + """ + 将 ZeRO 2 或 ZeRO 3 格式的 DeepSpeed 检查点转换为 BF16,并输出到指定目录下,命名规则为: + - 如果只有一个分片: + diffusion_pytorch_model.safetensors + - 如果分片多于一个: + diffusion_pytorch_model-00001-of-0000X.safetensors + diffusion_pytorch_model-00002-of-0000X.safetensors + ... + diffusion_pytorch_model.safetensors.index.json + """ + + if safe_serialization: + try: + from safetensors.torch import save_file + except ImportError: + raise ImportError("You need `pip install safetensors` to use safetensors.") + if max_shard_size is not None: + try: + from huggingface_hub import split_torch_state_dict_into_shards + except ImportError: + raise ImportError("You need `pip install huggingface_hub` to use the sharding feature.") + + state_dict = get_fp32_state_dict_from_zero_checkpoint( + checkpoint_dir, + tag=tag, + exclude_frozen_parameters=exclude_frozen_parameters, + lazy_mode=True + ) + + state_dict = to_torch_tensor(state_dict, return_empty_tensor=False) + + for key, tensor in state_dict.items(): + state_dict[key] = tensor.to(torch.bfloat16) + + if safe_serialization: + filename_pattern = "diffusion_pytorch_model{suffix}.safetensors" + else: + filename_pattern = "diffusion_pytorch_model{suffix}.bin" + + empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) + state_dict_split = split_torch_state_dict_into_shards( + empty_state_dict, + filename_pattern=filename_pattern, + max_shard_size=max_shard_size + ) + + os.makedirs(output_dir, exist_ok=True) + + filename_to_tensors = list(state_dict_split.filename_to_tensors.items()) + for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): + shard_state_dict = {t_name: state_dict[t_name] for t_name in tensors} + shard_state_dict = to_torch_tensor(shard_state_dict) + + # Save + output_path = os.path.join(output_dir, shard_file) + if safe_serialization: + save_file(shard_state_dict, output_path, metadata={"format": "pt"}) + else: + torch.save(shard_state_dict, output_path) + for t_name in shard_state_dict.keys(): + del state_dict[t_name] + del shard_state_dict + gc.collect() + + + if state_dict_split.is_sharded: + index = { + "metadata": state_dict_split.metadata, + "weight_map": state_dict_split.tensor_to_filename, + } + index_path = os.path.join(output_dir, "diffusion_pytorch_model.safetensors.index.json") + with open(index_path, "w", encoding="utf-8") as f: + f.write(json.dumps(index, indent=2, sort_keys=True) + "\n") + else: + only_filename = list(state_dict_split.filename_to_tensors.keys())[0] + old_path = os.path.join(output_dir, only_filename) + new_path = os.path.join(output_dir, "diffusion_pytorch_model.safetensors" if safe_serialization + else "diffusion_pytorch_model.bin") + if old_path != new_path: + os.rename(old_path, new_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument("output_dir", + type=str, + help="directory to the pytorch fp32 state_dict output files" + "(e.g. path/checkpoint-12-output/)") + parser.add_argument( + "--max_shard_size", + type=str, + default="5GB", + help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" + "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" + "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" + "without CPU OOM issues.") + parser.add_argument( + "--safe_serialization", + default=False, + action='store_true', + help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_bf16_state_dict(args.checkpoint_dir, + args.output_dir, + max_shard_size=args.max_shard_size, + safe_serialization=args.safe_serialization, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters) From 4615479b51306dd65747792d1f900073827233dd Mon Sep 17 00:00:00 2001 From: Yuxuan Zhang <2448370773@qq.com> Date: Tue, 14 Jan 2025 11:33:02 +0800 Subject: [PATCH 3/3] move to tools --- finetune/zero_to_fp32.py => tools/convert_weight_deepspeed2hf.py | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename finetune/zero_to_fp32.py => tools/convert_weight_deepspeed2hf.py (100%) diff --git a/finetune/zero_to_fp32.py b/tools/convert_weight_deepspeed2hf.py similarity index 100% rename from finetune/zero_to_fp32.py rename to tools/convert_weight_deepspeed2hf.py