update cli_demo

This commit is contained in:
zR 2024-08-23 15:04:55 +08:00
parent edcddcd99c
commit 0360745dc8
2 changed files with 17 additions and 17 deletions

View File

@ -21,8 +21,9 @@ import numpy as np
import torch
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler
def export_to_video_imageio(
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
) -> str:
"""
Export the video frames to a video file using imageio lib to Avoid "green screen" issue (for example CogVideoX)
@ -38,13 +39,13 @@ def export_to_video_imageio(
def generate_video(
prompt: str,
model_path: str,
output_path: str = "./output.mp4",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.float16,
prompt: str,
model_path: str,
output_path: str = "./output.mp4",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bloat16,
):
"""
Generates a video based on the given prompt and saves it to the specified path.
@ -56,11 +57,11 @@ def generate_video(
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- dtype (torch.dtype): The data type for computation (default is torch.float16).
- dtype (torch.dtype): The data type for computation (default is torch.bfloat16).
"""
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (float16).
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
# add device_map="balanced" in the from_pretrained function and remove the enable_model_cpu_offload()
# function to use Multi GPUs.
@ -79,8 +80,7 @@ def generate_video(
torch.cuda.reset_accumulated_memory_stats()
torch.cuda.reset_peak_memory_stats()
# Using with diffusers branch `main` to enable tiling. This will cost ONLY 12GB GPU memory.
# pipe.vae.enable_tiling()
pipe.vae.enable_tiling()
# 4. Generate the video frames based on the prompt.
# `num_frames` is the Number of frames to generate.
@ -90,7 +90,7 @@ def generate_video(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt
num_inference_steps=num_inference_steps, # Number of inference steps
num_frames=48, # Number of frames to generatechanged to 49 for diffusers version `0.31.0` and after.
num_frames=49, # Number of frames to generatechanged to 49 for diffusers version `0.31.0` and after.
guidance_scale=guidance_scale, # Guidance scale for classifier-free guidance
generator=torch.Generator().manual_seed(42), # Set the seed for reproducibility
).frames[0]
@ -103,7 +103,7 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
parser.add_argument(
"--model_path", type=str, default="THUDM/CogVideoX-2b", help="The path of the pre-trained model to be used"
"--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used"
)
parser.add_argument(
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
@ -114,13 +114,13 @@ if __name__ == "__main__":
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
parser.add_argument(
"--dtype", type=str, default="float16", help="The data type for computation (e.g., 'float16' or 'float32')"
"--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
)
args = parser.parse_args()
# Convert dtype argument to torch.dtype, NOT suggest BF16.
dtype = torch.float16 if args.dtype == "float16" else torch.float32
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
# main function to generate video.
generate_video(

View File

@ -1,7 +1,7 @@
args:
latent_channels: 16
mode: inference
# load: "{your_CogVideoX-2b-sat_path}/transformer" # This is for Full model without lora adapter
load: "{your CogVideoX SAT folder}/transformer" # This is for Full model without lora adapter
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
batch_size: 1